Metabolomic Signatures of In Vitro Biofilm Maturation of Streptococcus mutans
The Streptococcus mutans is commonly find in oral environment in both symbiont and dysbiotic conditions, where for the last one it causes the break in homeostatic balance and, in association with other microorganisms’ community, results in dental caries process. Additionally, it is important to dete...
Gespeichert in:
Veröffentlicht in: | Current microbiology 2022-03, Vol.79 (3), p.86-86, Article 86 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The
Streptococcus mutans
is commonly find in oral environment in both symbiont and dysbiotic conditions, where for the last one it causes the break in homeostatic balance and, in association with other microorganisms’ community, results in dental caries process. Additionally, it is important to determine the low molecular weight metabolites profile from
Streptococcus mutans
to distinguish the endogenous and exogenous compounds from patient subjected to salivary metabolomic studies. Thus, the objective of the present study was to characterize the in vitro metabolomic profile of the maturation of a single-species
Streptococcus mutans
biofilm using metabolomic approach by
1
H-nuclear magnetic resonance (NMR) spectroscopy. A distinct metabolomic profile was observed after 2 days of biofilm maturation, independently of the presence of enamel substrate. Sucrose, lactate, and fructose were the main metabolites responsible for the distinction. The sucrose was consumed by
S. mutans
in higher levels in the initial experimental periods than at 6 days of biofilm growth. Lactate and fructose were the main compounds secreted, regardless of the type of growth, but it was also observed production of propionate, iso-butyrate, and pyruvate. Pyruvate metabolism and glycolysis/gluconeogenesis were the main pathways related to biofilm growth. The results contribute to the determination of compounds that are resulted from oral microbial activity and help to guide further metabolomics studies. |
---|---|
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-022-02778-9 |