Elevated emissions of melamine and its derivatives in the indoor environments of typical e-waste recycling facilities and adjacent communities and implications for human exposure
Melamine and its derivatives are used as additives in flame retardants. Moreover, melamine-containing consumables such as laminates, adhesives, glues, and plastics are extensively used in electronic products. Nevertheless, there is no information concerning the identification of melamine and its der...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2022-06, Vol.432, p.128652-128652, Article 128652 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Melamine and its derivatives are used as additives in flame retardants. Moreover, melamine-containing consumables such as laminates, adhesives, glues, and plastics are extensively used in electronic products. Nevertheless, there is no information concerning the identification of melamine and its derivatives during e-waste recycling. In the present study, the occurrence of melamine and three of its derivatives (cyanuric acid, ammelide, and ammeline) was identified for the first time in indoor dust from typical e-waste recycling areas and adjacent rural communities. Urban communities situated about 80 kilometers away were used as a control. The target analytes were detected in almost all the dust samples, which were dominated by melamine and cyanuric acid. The total concentrations of melamine and its derivatives varied among sampling locations in the following order: e-waste workshops (geometric mean: 15,018 ng/g) > urban houses (9060 ng/g) > local rural houses (6204 ng/g) > local streets (201 ng/g). This suggested that e-waste dismantling/recycling activities mainly contributed to the abundant emission of melamine and its derivatives in e-waste dust. Correlation analysis indicated that melamine and its derivatives were similarly applied in electronic products and e-waste recycling resulted in common emissions. The combined toxicity of melamine and its derivatives on human bladder cancer cells was observed. Importantly, Monte Carlo analysis was used to determine that the estimated daily intakes of these chemicals via dust ingestion for occupational e-waste recycling workers were 2.5–9 times higher than the estimated daily intakes for adult residents in both adjacent local communities and urban areas. These results are the first to demonstrate that e-waste dismantling workers are more vulnerable to the exposure risk posed by the presence of melamine and its derivatives in e-waste dust, which deserves more research attention.
[Display omitted]
•Elevated emissions of melamine in e-waste dust.•Melamine and cyanuric acid were the dominated analytes in all the dust samples.•E-waste dismantling activities mainly contributed to massive emissions of ∑Melamines in e-waste dust.•Enhanced cell toxicity was observed in T24 cells under co-exposure condition.•E-waste workers are more vulnerable for exposure risk posed by ∑Melamines. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2022.128652 |