An approach for the scalable production of macroporous polymer beads

[Display omitted] A tubular co-flow reactor to produce macroporous polymer beads by polymerization of medium and high internal phase emulsion (M/HIPE) templates was developed. This reactor allows for improved production rates compared to tubing based microfluidic devices. Water-in-oil (W/O) M/HIPEs,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-06, Vol.616, p.834-845
Hauptverfasser: Ferrer, Juan, Jiang, Qixiang, Menner, Angelika, Bismarck, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 845
container_issue
container_start_page 834
container_title Journal of colloid and interface science
container_volume 616
creator Ferrer, Juan
Jiang, Qixiang
Menner, Angelika
Bismarck, Alexander
description [Display omitted] A tubular co-flow reactor to produce macroporous polymer beads by polymerization of medium and high internal phase emulsion (M/HIPE) templates was developed. This reactor allows for improved production rates compared to tubing based microfluidic devices. Water-in-oil (W/O) M/HIPEs, containing methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) monomers in the continuous phase, were injected into a re-circulating carrier phase. The continuous phase of the emulsion droplets was UV polymerized in situ, resulting in polyM/HIPE beads. The emulsion composition was adjusted to produce poly(MMA-co-EGDMA) porous polymer beads with a protective crust and an interconnected internal pore structure. HCl loaded beads were produced by adding the active ingredient into the dispersed emulsion phase, leading to HCl encapsulation in the porous structure of the beads after polymerization. Even after exposure to ambient conditions for 24 h, 60% of the HCl remained in the beads, indicating good encapsulation efficiencies. Thus, it is possible to use such macroporous beads as delivery vehicles.
doi_str_mv 10.1016/j.jcis.2022.02.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2648850418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002197972200279X</els_id><sourcerecordid>2636885863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-dc814e7c50d159a9c754fad7ccd84d17e413398b36db60ac07e365460bdc72643</originalsourceid><addsrcrecordid>eNqNkE1L7TAQhoNc0ePHH3AhWbrpcdIkTQtuxG8Q3Og6pJMp9tCe9CY9gv_eHI7XpVwYGBieeZl5GDsTsBQgqsvVcoV9WpZQlkvIpeUeWwhodGEEyD9sAVCKojGNOWRHKa0AhNC6OWCHUpeqbgws2O31mrtpisHhO-9C5PM78YRucO1APM_9Buc-rHno-OgwhinEsEl8CsPnSJG35Hw6YfudGxKdfvdj9nZ_93rzWDy_PDzdXD8XqKScC4-1UGRQgxe6cQ0arTrnDaKvlReGlJCyqVtZ-bYCh2BIVlpV0Ho0ZaXkMbvY5ea7_m4ozXbsE9IwuDXlo2xm6lqDEvV_oLLKbF3JjJY7NH-XUqTOTrEfXfy0AuxWtF3ZrWi7FW0hl94unX_nb9qR_M_KP7MZuNoBlIV89BRtwp7WSL6PhLP1of8t_wuG844p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636885863</pqid></control><display><type>article</type><title>An approach for the scalable production of macroporous polymer beads</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ferrer, Juan ; Jiang, Qixiang ; Menner, Angelika ; Bismarck, Alexander</creator><creatorcontrib>Ferrer, Juan ; Jiang, Qixiang ; Menner, Angelika ; Bismarck, Alexander</creatorcontrib><description>[Display omitted] A tubular co-flow reactor to produce macroporous polymer beads by polymerization of medium and high internal phase emulsion (M/HIPE) templates was developed. This reactor allows for improved production rates compared to tubing based microfluidic devices. Water-in-oil (W/O) M/HIPEs, containing methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) monomers in the continuous phase, were injected into a re-circulating carrier phase. The continuous phase of the emulsion droplets was UV polymerized in situ, resulting in polyM/HIPE beads. The emulsion composition was adjusted to produce poly(MMA-co-EGDMA) porous polymer beads with a protective crust and an interconnected internal pore structure. HCl loaded beads were produced by adding the active ingredient into the dispersed emulsion phase, leading to HCl encapsulation in the porous structure of the beads after polymerization. Even after exposure to ambient conditions for 24 h, 60% of the HCl remained in the beads, indicating good encapsulation efficiencies. Thus, it is possible to use such macroporous beads as delivery vehicles.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2022.02.053</identifier><identifier>PMID: 35248970</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>active ingredients ; Beads ; Clogging ; Emulsion templating ; emulsions ; Emulsions - chemistry ; encapsulation ; ethylene glycol ; Macroporous polymer ; Microfluidic ; Polymer particles ; Polymerization ; polymers ; Polymers - chemistry ; Porosity ; porous media ; Water - chemistry</subject><ispartof>Journal of colloid and interface science, 2022-06, Vol.616, p.834-845</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-dc814e7c50d159a9c754fad7ccd84d17e413398b36db60ac07e365460bdc72643</citedby><cites>FETCH-LOGICAL-c433t-dc814e7c50d159a9c754fad7ccd84d17e413398b36db60ac07e365460bdc72643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002197972200279X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35248970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrer, Juan</creatorcontrib><creatorcontrib>Jiang, Qixiang</creatorcontrib><creatorcontrib>Menner, Angelika</creatorcontrib><creatorcontrib>Bismarck, Alexander</creatorcontrib><title>An approach for the scalable production of macroporous polymer beads</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] A tubular co-flow reactor to produce macroporous polymer beads by polymerization of medium and high internal phase emulsion (M/HIPE) templates was developed. This reactor allows for improved production rates compared to tubing based microfluidic devices. Water-in-oil (W/O) M/HIPEs, containing methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) monomers in the continuous phase, were injected into a re-circulating carrier phase. The continuous phase of the emulsion droplets was UV polymerized in situ, resulting in polyM/HIPE beads. The emulsion composition was adjusted to produce poly(MMA-co-EGDMA) porous polymer beads with a protective crust and an interconnected internal pore structure. HCl loaded beads were produced by adding the active ingredient into the dispersed emulsion phase, leading to HCl encapsulation in the porous structure of the beads after polymerization. Even after exposure to ambient conditions for 24 h, 60% of the HCl remained in the beads, indicating good encapsulation efficiencies. Thus, it is possible to use such macroporous beads as delivery vehicles.</description><subject>active ingredients</subject><subject>Beads</subject><subject>Clogging</subject><subject>Emulsion templating</subject><subject>emulsions</subject><subject>Emulsions - chemistry</subject><subject>encapsulation</subject><subject>ethylene glycol</subject><subject>Macroporous polymer</subject><subject>Microfluidic</subject><subject>Polymer particles</subject><subject>Polymerization</subject><subject>polymers</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>porous media</subject><subject>Water - chemistry</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1L7TAQhoNc0ePHH3AhWbrpcdIkTQtuxG8Q3Og6pJMp9tCe9CY9gv_eHI7XpVwYGBieeZl5GDsTsBQgqsvVcoV9WpZQlkvIpeUeWwhodGEEyD9sAVCKojGNOWRHKa0AhNC6OWCHUpeqbgws2O31mrtpisHhO-9C5PM78YRucO1APM_9Buc-rHno-OgwhinEsEl8CsPnSJG35Hw6YfudGxKdfvdj9nZ_93rzWDy_PDzdXD8XqKScC4-1UGRQgxe6cQ0arTrnDaKvlReGlJCyqVtZ-bYCh2BIVlpV0Ho0ZaXkMbvY5ea7_m4ozXbsE9IwuDXlo2xm6lqDEvV_oLLKbF3JjJY7NH-XUqTOTrEfXfy0AuxWtF3ZrWi7FW0hl94unX_nb9qR_M_KP7MZuNoBlIV89BRtwp7WSL6PhLP1of8t_wuG844p</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Ferrer, Juan</creator><creator>Jiang, Qixiang</creator><creator>Menner, Angelika</creator><creator>Bismarck, Alexander</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20220615</creationdate><title>An approach for the scalable production of macroporous polymer beads</title><author>Ferrer, Juan ; Jiang, Qixiang ; Menner, Angelika ; Bismarck, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-dc814e7c50d159a9c754fad7ccd84d17e413398b36db60ac07e365460bdc72643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>active ingredients</topic><topic>Beads</topic><topic>Clogging</topic><topic>Emulsion templating</topic><topic>emulsions</topic><topic>Emulsions - chemistry</topic><topic>encapsulation</topic><topic>ethylene glycol</topic><topic>Macroporous polymer</topic><topic>Microfluidic</topic><topic>Polymer particles</topic><topic>Polymerization</topic><topic>polymers</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>porous media</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, Juan</creatorcontrib><creatorcontrib>Jiang, Qixiang</creatorcontrib><creatorcontrib>Menner, Angelika</creatorcontrib><creatorcontrib>Bismarck, Alexander</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrer, Juan</au><au>Jiang, Qixiang</au><au>Menner, Angelika</au><au>Bismarck, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An approach for the scalable production of macroporous polymer beads</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-06-15</date><risdate>2022</risdate><volume>616</volume><spage>834</spage><epage>845</epage><pages>834-845</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] A tubular co-flow reactor to produce macroporous polymer beads by polymerization of medium and high internal phase emulsion (M/HIPE) templates was developed. This reactor allows for improved production rates compared to tubing based microfluidic devices. Water-in-oil (W/O) M/HIPEs, containing methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) monomers in the continuous phase, were injected into a re-circulating carrier phase. The continuous phase of the emulsion droplets was UV polymerized in situ, resulting in polyM/HIPE beads. The emulsion composition was adjusted to produce poly(MMA-co-EGDMA) porous polymer beads with a protective crust and an interconnected internal pore structure. HCl loaded beads were produced by adding the active ingredient into the dispersed emulsion phase, leading to HCl encapsulation in the porous structure of the beads after polymerization. Even after exposure to ambient conditions for 24 h, 60% of the HCl remained in the beads, indicating good encapsulation efficiencies. Thus, it is possible to use such macroporous beads as delivery vehicles.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35248970</pmid><doi>10.1016/j.jcis.2022.02.053</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-06, Vol.616, p.834-845
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2648850418
source MEDLINE; Elsevier ScienceDirect Journals
subjects active ingredients
Beads
Clogging
Emulsion templating
emulsions
Emulsions - chemistry
encapsulation
ethylene glycol
Macroporous polymer
Microfluidic
Polymer particles
Polymerization
polymers
Polymers - chemistry
Porosity
porous media
Water - chemistry
title An approach for the scalable production of macroporous polymer beads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20approach%20for%20the%20scalable%20production%20of%20macroporous%20polymer%20beads&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Ferrer,%20Juan&rft.date=2022-06-15&rft.volume=616&rft.spage=834&rft.epage=845&rft.pages=834-845&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2022.02.053&rft_dat=%3Cproquest_cross%3E2636885863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636885863&rft_id=info:pmid/35248970&rft_els_id=S002197972200279X&rfr_iscdi=true