An approach for the scalable production of macroporous polymer beads
[Display omitted] A tubular co-flow reactor to produce macroporous polymer beads by polymerization of medium and high internal phase emulsion (M/HIPE) templates was developed. This reactor allows for improved production rates compared to tubing based microfluidic devices. Water-in-oil (W/O) M/HIPEs,...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2022-06, Vol.616, p.834-845 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
A tubular co-flow reactor to produce macroporous polymer beads by polymerization of medium and high internal phase emulsion (M/HIPE) templates was developed. This reactor allows for improved production rates compared to tubing based microfluidic devices. Water-in-oil (W/O) M/HIPEs, containing methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) monomers in the continuous phase, were injected into a re-circulating carrier phase. The continuous phase of the emulsion droplets was UV polymerized in situ, resulting in polyM/HIPE beads. The emulsion composition was adjusted to produce poly(MMA-co-EGDMA) porous polymer beads with a protective crust and an interconnected internal pore structure. HCl loaded beads were produced by adding the active ingredient into the dispersed emulsion phase, leading to HCl encapsulation in the porous structure of the beads after polymerization. Even after exposure to ambient conditions for 24 h, 60% of the HCl remained in the beads, indicating good encapsulation efficiencies. Thus, it is possible to use such macroporous beads as delivery vehicles. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2022.02.053 |