Finite-sample corrected inference for two-step GMM in time series

This paper develops a finite-sample corrected inference for the efficient generalized method of moments (GMM) in time series. To capture a higher-order uncertainty embodied in estimating the time series GMM weight matrix, we extend the finite-sample corrected variance formula of Windmeijer (2005) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2023-05, Vol.234 (1), p.327-352
Hauptverfasser: Hwang, Jungbin, Valdés, Gonzalo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue 1
container_start_page 327
container_title Journal of econometrics
container_volume 234
creator Hwang, Jungbin
Valdés, Gonzalo
description This paper develops a finite-sample corrected inference for the efficient generalized method of moments (GMM) in time series. To capture a higher-order uncertainty embodied in estimating the time series GMM weight matrix, we extend the finite-sample corrected variance formula of Windmeijer (2005) to heteroskedasticity autocorrelated robust (HAR) inference. Using fixed-smoothing asymptotics, we show that our finite-sample corrected test statistics lead to standard asymptotic t or F critical values and suffer from less over-rejection of the null hypothesis than existing GMM procedures on finite-samples, including continuously updating GMM. Not only does our finite-sample corrected variance formula correct for the bias arising from the plugged-in long-run variance estimation, but it is also not exposed to a potential side effect of Windmeijer’s formula, which can introduce an additional source of over-rejection after the correction.
doi_str_mv 10.1016/j.jeconom.2021.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2648841059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407622000069</els_id><sourcerecordid>2648841059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-a4f971ac26dc967ddc1b37438420b93c95a2d88b83c147db43568e7f8169b0f43</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAgCq6rP0HI0UtrvpqkJ1kWXYVdvOg5tMkUUtqmJl3Ff2_L7t3THGbeF-ZB6J6SnBIqH9u8BRuG0OeMMJpTlhOiLtCKasUyqcviEq0IJyITRMlrdJNSSwgphOYrtHnxg58gS1U_doBtiBHsBA77oYEIgwXchIinn5ClCUa8OxzmFZ58DzhB9JBu0VVTdQnuznONPl-eP7av2f5997bd7DMrCjFllWhKRSvLpLOlVM5ZWnMluBaM1CW3ZVExp3WtuaVCuVrwQmpQjaayrEkj-Bo9nHrHGL6OkCbT-2Sh66oBwjEZJoXWgpKinE-L06mNIaUIjRmj76v4aygxC5lpzZnMLGSGMjOTzbmnUw7mP749RJOsXwycX1SMC_6fhj9ryXaV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648841059</pqid></control><display><type>article</type><title>Finite-sample corrected inference for two-step GMM in time series</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hwang, Jungbin ; Valdés, Gonzalo</creator><creatorcontrib>Hwang, Jungbin ; Valdés, Gonzalo</creatorcontrib><description>This paper develops a finite-sample corrected inference for the efficient generalized method of moments (GMM) in time series. To capture a higher-order uncertainty embodied in estimating the time series GMM weight matrix, we extend the finite-sample corrected variance formula of Windmeijer (2005) to heteroskedasticity autocorrelated robust (HAR) inference. Using fixed-smoothing asymptotics, we show that our finite-sample corrected test statistics lead to standard asymptotic t or F critical values and suffer from less over-rejection of the null hypothesis than existing GMM procedures on finite-samples, including continuously updating GMM. Not only does our finite-sample corrected variance formula correct for the bias arising from the plugged-in long-run variance estimation, but it is also not exposed to a potential side effect of Windmeijer’s formula, which can introduce an additional source of over-rejection after the correction.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2021.12.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>adverse effects ; autocorrelation ; econometrics ; Finite-sample correction ; Fixed-smoothing asymptotics ; Generalized method of moments ; heteroskedasticity ; Heteroskedasticity autocorrelated robust ; t and F tests ; time series analysis ; uncertainty ; variance</subject><ispartof>Journal of econometrics, 2023-05, Vol.234 (1), p.327-352</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-a4f971ac26dc967ddc1b37438420b93c95a2d88b83c147db43568e7f8169b0f43</citedby><cites>FETCH-LOGICAL-c454t-a4f971ac26dc967ddc1b37438420b93c95a2d88b83c147db43568e7f8169b0f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407622000069$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Hwang, Jungbin</creatorcontrib><creatorcontrib>Valdés, Gonzalo</creatorcontrib><title>Finite-sample corrected inference for two-step GMM in time series</title><title>Journal of econometrics</title><description>This paper develops a finite-sample corrected inference for the efficient generalized method of moments (GMM) in time series. To capture a higher-order uncertainty embodied in estimating the time series GMM weight matrix, we extend the finite-sample corrected variance formula of Windmeijer (2005) to heteroskedasticity autocorrelated robust (HAR) inference. Using fixed-smoothing asymptotics, we show that our finite-sample corrected test statistics lead to standard asymptotic t or F critical values and suffer from less over-rejection of the null hypothesis than existing GMM procedures on finite-samples, including continuously updating GMM. Not only does our finite-sample corrected variance formula correct for the bias arising from the plugged-in long-run variance estimation, but it is also not exposed to a potential side effect of Windmeijer’s formula, which can introduce an additional source of over-rejection after the correction.</description><subject>adverse effects</subject><subject>autocorrelation</subject><subject>econometrics</subject><subject>Finite-sample correction</subject><subject>Fixed-smoothing asymptotics</subject><subject>Generalized method of moments</subject><subject>heteroskedasticity</subject><subject>Heteroskedasticity autocorrelated robust</subject><subject>t and F tests</subject><subject>time series analysis</subject><subject>uncertainty</subject><subject>variance</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LxDAQBuAgCq6rP0HI0UtrvpqkJ1kWXYVdvOg5tMkUUtqmJl3Ff2_L7t3THGbeF-ZB6J6SnBIqH9u8BRuG0OeMMJpTlhOiLtCKasUyqcviEq0IJyITRMlrdJNSSwgphOYrtHnxg58gS1U_doBtiBHsBA77oYEIgwXchIinn5ClCUa8OxzmFZ58DzhB9JBu0VVTdQnuznONPl-eP7av2f5997bd7DMrCjFllWhKRSvLpLOlVM5ZWnMluBaM1CW3ZVExp3WtuaVCuVrwQmpQjaayrEkj-Bo9nHrHGL6OkCbT-2Sh66oBwjEZJoXWgpKinE-L06mNIaUIjRmj76v4aygxC5lpzZnMLGSGMjOTzbmnUw7mP749RJOsXwycX1SMC_6fhj9ryXaV</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Hwang, Jungbin</creator><creator>Valdés, Gonzalo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230501</creationdate><title>Finite-sample corrected inference for two-step GMM in time series</title><author>Hwang, Jungbin ; Valdés, Gonzalo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-a4f971ac26dc967ddc1b37438420b93c95a2d88b83c147db43568e7f8169b0f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adverse effects</topic><topic>autocorrelation</topic><topic>econometrics</topic><topic>Finite-sample correction</topic><topic>Fixed-smoothing asymptotics</topic><topic>Generalized method of moments</topic><topic>heteroskedasticity</topic><topic>Heteroskedasticity autocorrelated robust</topic><topic>t and F tests</topic><topic>time series analysis</topic><topic>uncertainty</topic><topic>variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Jungbin</creatorcontrib><creatorcontrib>Valdés, Gonzalo</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Jungbin</au><au>Valdés, Gonzalo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-sample corrected inference for two-step GMM in time series</atitle><jtitle>Journal of econometrics</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>234</volume><issue>1</issue><spage>327</spage><epage>352</epage><pages>327-352</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper develops a finite-sample corrected inference for the efficient generalized method of moments (GMM) in time series. To capture a higher-order uncertainty embodied in estimating the time series GMM weight matrix, we extend the finite-sample corrected variance formula of Windmeijer (2005) to heteroskedasticity autocorrelated robust (HAR) inference. Using fixed-smoothing asymptotics, we show that our finite-sample corrected test statistics lead to standard asymptotic t or F critical values and suffer from less over-rejection of the null hypothesis than existing GMM procedures on finite-samples, including continuously updating GMM. Not only does our finite-sample corrected variance formula correct for the bias arising from the plugged-in long-run variance estimation, but it is also not exposed to a potential side effect of Windmeijer’s formula, which can introduce an additional source of over-rejection after the correction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2021.12.007</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2023-05, Vol.234 (1), p.327-352
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_2648841059
source Elsevier ScienceDirect Journals Complete
subjects adverse effects
autocorrelation
econometrics
Finite-sample correction
Fixed-smoothing asymptotics
Generalized method of moments
heteroskedasticity
Heteroskedasticity autocorrelated robust
t and F tests
time series analysis
uncertainty
variance
title Finite-sample corrected inference for two-step GMM in time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-sample%20corrected%20inference%20for%20two-step%20GMM%20in%20time%20series&rft.jtitle=Journal%20of%20econometrics&rft.au=Hwang,%20Jungbin&rft.date=2023-05-01&rft.volume=234&rft.issue=1&rft.spage=327&rft.epage=352&rft.pages=327-352&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2021.12.007&rft_dat=%3Cproquest_cross%3E2648841059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648841059&rft_id=info:pmid/&rft_els_id=S0304407622000069&rfr_iscdi=true