Finite-sample corrected inference for two-step GMM in time series
This paper develops a finite-sample corrected inference for the efficient generalized method of moments (GMM) in time series. To capture a higher-order uncertainty embodied in estimating the time series GMM weight matrix, we extend the finite-sample corrected variance formula of Windmeijer (2005) to...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2023-05, Vol.234 (1), p.327-352 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper develops a finite-sample corrected inference for the efficient generalized method of moments (GMM) in time series. To capture a higher-order uncertainty embodied in estimating the time series GMM weight matrix, we extend the finite-sample corrected variance formula of Windmeijer (2005) to heteroskedasticity autocorrelated robust (HAR) inference. Using fixed-smoothing asymptotics, we show that our finite-sample corrected test statistics lead to standard asymptotic t or F critical values and suffer from less over-rejection of the null hypothesis than existing GMM procedures on finite-samples, including continuously updating GMM. Not only does our finite-sample corrected variance formula correct for the bias arising from the plugged-in long-run variance estimation, but it is also not exposed to a potential side effect of Windmeijer’s formula, which can introduce an additional source of over-rejection after the correction. |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/j.jeconom.2021.12.007 |