Control of solidification structure of wear-resistant austenite-bainite polyphase steel with nodular eutectic

A new austenite-bainite polyphase steel with nodular carbides can be obtained by controlling the solidification structure of the steel melt, which only contains manganese and silicon, with modification of Si-Ca-B compound and air-hardening. The result indicates that the nodular carbide is in the eut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 1997-12, Vol.32 (23), p.6383-6386
Hauptverfasser: QINGFENG, G, QICHUAN, J, ZHENMING, X, ZHENMING, H, YUGUANG, Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new austenite-bainite polyphase steel with nodular carbides can be obtained by controlling the solidification structure of the steel melt, which only contains manganese and silicon, with modification of Si-Ca-B compound and air-hardening. The result indicates that the nodular carbide is in the eutectic form of austenite and (Fe, Mn)3C, which is formed between the austenitic dendrites during solidification due to element segregation. The modifying elements (calcium, silicon, etc.) have the following functions: (1) their chemical compounds (CaS, SiO2) are formed preferentially during solidification to act as heterogeneous nuclei for nodular eutectic crystallization, (2) the eutectic can be turned into the nodular shape after modification because of the decrease in the amount of the adsorbed impurity elements (oxygen and sulphur) and silicon enriched on the eutectic growth interface. The quantity of nodular eutectic makes up 10%–20%, with a size of 15–25 μm. The hardness and the toughness of this steel are 40–50 HRC and 20–40 J, respectively, and hence its wear-resistance can be more greatly increased than that of the austenite-manganese steel and the austenite-bainite steel.
ISSN:0022-2461
1573-4803
DOI:10.1023/a:1018622118767