Effects of microplastics and carbon nanotubes on soil geochemical properties and bacterial communities
A 100-day soil incubation experiment was conducted to explore the effects of conventional (high-density polyethylene, HDPE) and biodegradable (polylactic acid, PLA) microplastics (MPs) and multiwall carbon nanotubes (MWCNTs) on soil geochemical properties and bacterial communities. Generally, soil p...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2022-07, Vol.433, p.128826-128826, Article 128826 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 100-day soil incubation experiment was conducted to explore the effects of conventional (high-density polyethylene, HDPE) and biodegradable (polylactic acid, PLA) microplastics (MPs) and multiwall carbon nanotubes (MWCNTs) on soil geochemical properties and bacterial communities. Generally, soil pH was increased by 10% HDPE and 10% PLA, but decreased by increasing MWCNTs. Soil dissolved organic carbon content was only increased by 10% PLA. NO3−-N content was significantly decreased by MPs, with a decrement of 99% by 10% PLA. Similarly, available P content was reduced by 10% MPs. The activities of urease and alkaline phosphatase were stimulated by 10% PLA, but generally inhibited by HDPE. Conversely, FDAse activity was stimulated by HDPE, but inhibited by 10% PLA, whereas invertase activity decreased with increasing MWCNTs. Overall, both MPs and MWCNTs changed soil bacterial diversity. Co-exposure to 10% MPs and MWCNTs of 1 and 10 mg/kg caused the lowest species richness and Shannon indexes. MPs especially at the 10% dose changed bacterial community composition and the associated metabolic pathways, causing the enrichment of specific taxa and functional genes. Our findings show that conventional and biodegradable MPs differently change soil geochemical properties and microbial community structure and functions, which can be further modified by co-existing MWCNTs.
[Display omitted]
•MPs especially high-dose PLA lowered soil available N and P content.•Both MPs and MWCNTs changed the activities of soil enzymes.•High-dose MPs decreased bacterial richness and diversity.•MPs altered soil bacterial community structure and functions.•Effects of MPs varied with MP type and dose and co-existing MWCNTs. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2022.128826 |