Cilostazol attenuates cardiac oxidative stress and inflammation in hypercholesterolemic rats

Atherosclerosis is a multifactorial chronic disease associated with pro-inflammatory and pro-oxidative cardiovascular states. Cilostazol, a selective phosphodiesterase 3 inhibitor (PDE3), is clinically used in the treatment of intermittent claudication and secondary prevention of cerebral infarction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naunyn-Schmiedeberg's archives of pharmacology 2022-07, Vol.395 (7), p.789-801
Hauptverfasser: de Oliveira Lopes, Rosane, Lima, Gabriel Ferreira, Mendes, Ana Beatriz Araújo, Autran, Lis Jappour, de Assis Pereira, Nikolas Cunha, Brazão, Stephani Correia, Alexandre-Santos, Beatriz, Frantz, Eliete Dalla Corte, Scaramello, Christianne Brêtas Vieira, Brito, Fernanda Carla Ferreira, Motta, Nadia Alice Vieira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atherosclerosis is a multifactorial chronic disease associated with pro-inflammatory and pro-oxidative cardiovascular states. Cilostazol, a selective phosphodiesterase 3 inhibitor (PDE3), is clinically used in the treatment of intermittent claudication and secondary prevention of cerebral infarction. The aim of this study was to evaluate the cardioprotective effects of cilostazol and the molecular mechanisms involved in hypercholesterolemic rats. Male Wistar rats were divided into four groups: control group (C) and control + cilostazol group (C+CILO), that were fed a standard chow diet, and hypercholesterolemic diet group (HCD) and HCD + cilostazol (HCD+CILO) that were fed a hypercholesterolemic diet. Cilostazol treatment started after 30 days for C+CILO and HCD+CILO groups. Animals were administered cilostazol once a day for 15 days. Subsequently, serum and left ventricles were extracted for evaluation of lipid profile, inflammatory, and oxidative biomarkers. The HCD group displayed increased serum lipid levels, inflammatory cytokines production, and cardiac NF-kB protein expression and decreased cardiac Nrf2-mediated antioxidant activity. Conversely, the cilostazol treatment improved all these cardiac deleterious effects, inhibiting NF-kB activation and subsequently decreasing inflammatory mediators, reestablishing the antioxidant properties through Nrf2-mediated pathway, including increased SOD, GPx, and catalase expression. Taken together, our results indicated that cilostazol protects hypercholesterolemia-induced cardiac damage by molecular mechanisms targeting the crosstalk between Nrf2 induction and NF-kB inhibition in the heart.
ISSN:0028-1298
1432-1912
DOI:10.1007/s00210-022-02233-3