Ride the dust: linking dust dispersal and spatial distribution of microorganisms across an arid landscape

Summary In arid ecosystems, where the soil is directly exposed to the action of the wind due to sparse vegetation, dust aerosolization is a consequence of soil degradation and concomitantly, a major vector of microbial dispersal. Disturbances such as livestock grazing or fire can exacerbate wind ero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2022-09, Vol.24 (9), p.4094-4107
Hauptverfasser: Schiro, Gabriele, Chen, Yongjian, Blankinship, Joseph C., Barberán, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary In arid ecosystems, where the soil is directly exposed to the action of the wind due to sparse vegetation, dust aerosolization is a consequence of soil degradation and concomitantly, a major vector of microbial dispersal. Disturbances such as livestock grazing or fire can exacerbate wind erosion and dust production. Here, we sampled surface soils in 29 locations across an arid landscape in southwestern USA and characterized their prokaryotic and fungal communities. At four of these locations, we also sampled potential fugitive dust. By comparing the composition of soil and dust samples, we determined the role of dust dispersal in structuring the biogeography of soil microorganisms across the landscape. For Bacteria/Archaea, we found dust associated taxa to have on average, higher regional occupancies compared to soil associated taxa. Complementarily, we found dust samples to harbour a higher amount of widely distributed taxa compared to soil samples. Overall, our study shows how dust dispersal plays a role in the spatial distribution of soil Bacteria/Archaea, but not soil Fungi, and might inform indicators of soil health and stability in arid ecosystems.
ISSN:1462-2912
1462-2920
DOI:10.1111/1462-2920.15998