Decentralized Brain Age Estimation Using MRI Data

Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimagi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroinformatics (Totowa, N.J.) N.J.), 2022-10, Vol.20 (4), p.981-990
Hauptverfasser: Basodi, Sunitha, Raja, Rajikha, Ray, Bhaskar, Gazula, Harshvardhan, Sarwate, Anand D., Plis, Sergey, Liu, Jingyu, Verner, Eric, Calhoun, Vince D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 4
container_start_page 981
container_title Neuroinformatics (Totowa, N.J.)
container_volume 20
creator Basodi, Sunitha
Raja, Rajikha
Ray, Bhaskar
Gazula, Harshvardhan
Sarwate, Anand D.
Plis, Sergey
Liu, Jingyu
Verner, Eric
Calhoun, Vince D.
description Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location.
doi_str_mv 10.1007/s12021-022-09570-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2647211260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727499044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-9da796eab2c6f97d661607b978d2c852ea881533d8e7f52239fb0caec24b02e93</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4Mobk6_gA9S8MWX6uXSJs3j3KYOFEHcc0jbdHR07UxamH56MzsVfPApB_nd_-5-hJxTuKYA4sZRBKQhIIYgYwHh9oAMaRzLECCRh7uayRCFpANy4twKALkAOCYDFrMEGI-HhE5NZurW6qr8MHlwa3VZB-OlCWauLde6LZs6WLiyXgZPL_Ngqlt9So4KXTlztn9HZHE3e508hI_P9_PJ-DHMmIA2lLkWkhudYsYLKXLOKQeRSpHkmCUxGp0kfj-WJ0YUMSKTRQqZNhlGKaCRbESu-tyNbd4641q1Ll1mqkrXpumcQh4JpBQ5ePTyD7pqOlv77RQKFJGUEEWewp7KbOOcNYXaWH-ifVcU1E6o6oUqL1R9CVVb33Sxj-7Stcl_Wr4NeoD1gPNf9dLY39n_xH4C2uJ-UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727499044</pqid></control><display><type>article</type><title>Decentralized Brain Age Estimation Using MRI Data</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Basodi, Sunitha ; Raja, Rajikha ; Ray, Bhaskar ; Gazula, Harshvardhan ; Sarwate, Anand D. ; Plis, Sergey ; Liu, Jingyu ; Verner, Eric ; Calhoun, Vince D.</creator><creatorcontrib>Basodi, Sunitha ; Raja, Rajikha ; Ray, Bhaskar ; Gazula, Harshvardhan ; Sarwate, Anand D. ; Plis, Sergey ; Liu, Jingyu ; Verner, Eric ; Calhoun, Vince D.</creatorcontrib><description>Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-022-09570-x</identifier><identifier>PMID: 35380365</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Age ; Age determination ; Age differences ; Aging ; Algorithms ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Brain architecture ; Collaboration ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Datasets ; Deep learning ; Functional anatomy ; Functional magnetic resonance imaging ; Machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Neuroimaging ; Neuroimaging - methods ; Neurology ; Neurosciences ; Original Article ; Prediction models ; Privacy ; Regression analysis</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2022-10, Vol.20 (4), p.981-990</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-9da796eab2c6f97d661607b978d2c852ea881533d8e7f52239fb0caec24b02e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-022-09570-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-022-09570-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35380365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basodi, Sunitha</creatorcontrib><creatorcontrib>Raja, Rajikha</creatorcontrib><creatorcontrib>Ray, Bhaskar</creatorcontrib><creatorcontrib>Gazula, Harshvardhan</creatorcontrib><creatorcontrib>Sarwate, Anand D.</creatorcontrib><creatorcontrib>Plis, Sergey</creatorcontrib><creatorcontrib>Liu, Jingyu</creatorcontrib><creatorcontrib>Verner, Eric</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><title>Decentralized Brain Age Estimation Using MRI Data</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location.</description><subject>Age</subject><subject>Age determination</subject><subject>Age differences</subject><subject>Aging</subject><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Brain architecture</subject><subject>Collaboration</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Functional anatomy</subject><subject>Functional magnetic resonance imaging</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Privacy</subject><subject>Regression analysis</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kFFLwzAQx4Mobk6_gA9S8MWX6uXSJs3j3KYOFEHcc0jbdHR07UxamH56MzsVfPApB_nd_-5-hJxTuKYA4sZRBKQhIIYgYwHh9oAMaRzLECCRh7uayRCFpANy4twKALkAOCYDFrMEGI-HhE5NZurW6qr8MHlwa3VZB-OlCWauLde6LZs6WLiyXgZPL_Ngqlt9So4KXTlztn9HZHE3e508hI_P9_PJ-DHMmIA2lLkWkhudYsYLKXLOKQeRSpHkmCUxGp0kfj-WJ0YUMSKTRQqZNhlGKaCRbESu-tyNbd4641q1Ll1mqkrXpumcQh4JpBQ5ePTyD7pqOlv77RQKFJGUEEWewp7KbOOcNYXaWH-ifVcU1E6o6oUqL1R9CVVb33Sxj-7Stcl_Wr4NeoD1gPNf9dLY39n_xH4C2uJ-UQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Basodi, Sunitha</creator><creator>Raja, Rajikha</creator><creator>Ray, Bhaskar</creator><creator>Gazula, Harshvardhan</creator><creator>Sarwate, Anand D.</creator><creator>Plis, Sergey</creator><creator>Liu, Jingyu</creator><creator>Verner, Eric</creator><creator>Calhoun, Vince D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20221001</creationdate><title>Decentralized Brain Age Estimation Using MRI Data</title><author>Basodi, Sunitha ; Raja, Rajikha ; Ray, Bhaskar ; Gazula, Harshvardhan ; Sarwate, Anand D. ; Plis, Sergey ; Liu, Jingyu ; Verner, Eric ; Calhoun, Vince D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-9da796eab2c6f97d661607b978d2c852ea881533d8e7f52239fb0caec24b02e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>Age determination</topic><topic>Age differences</topic><topic>Aging</topic><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Brain architecture</topic><topic>Collaboration</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Functional anatomy</topic><topic>Functional magnetic resonance imaging</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Privacy</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basodi, Sunitha</creatorcontrib><creatorcontrib>Raja, Rajikha</creatorcontrib><creatorcontrib>Ray, Bhaskar</creatorcontrib><creatorcontrib>Gazula, Harshvardhan</creatorcontrib><creatorcontrib>Sarwate, Anand D.</creatorcontrib><creatorcontrib>Plis, Sergey</creatorcontrib><creatorcontrib>Liu, Jingyu</creatorcontrib><creatorcontrib>Verner, Eric</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basodi, Sunitha</au><au>Raja, Rajikha</au><au>Ray, Bhaskar</au><au>Gazula, Harshvardhan</au><au>Sarwate, Anand D.</au><au>Plis, Sergey</au><au>Liu, Jingyu</au><au>Verner, Eric</au><au>Calhoun, Vince D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Brain Age Estimation Using MRI Data</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>20</volume><issue>4</issue><spage>981</spage><epage>990</epage><pages>981-990</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35380365</pmid><doi>10.1007/s12021-022-09570-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-2791
ispartof Neuroinformatics (Totowa, N.J.), 2022-10, Vol.20 (4), p.981-990
issn 1539-2791
1559-0089
language eng
recordid cdi_proquest_miscellaneous_2647211260
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Age
Age determination
Age differences
Aging
Algorithms
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - diagnostic imaging
Brain architecture
Collaboration
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Datasets
Deep learning
Functional anatomy
Functional magnetic resonance imaging
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Neuroimaging
Neuroimaging - methods
Neurology
Neurosciences
Original Article
Prediction models
Privacy
Regression analysis
title Decentralized Brain Age Estimation Using MRI Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Brain%20Age%20Estimation%20Using%20MRI%20Data&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Basodi,%20Sunitha&rft.date=2022-10-01&rft.volume=20&rft.issue=4&rft.spage=981&rft.epage=990&rft.pages=981-990&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-022-09570-x&rft_dat=%3Cproquest_cross%3E2727499044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727499044&rft_id=info:pmid/35380365&rfr_iscdi=true