Decentralized Brain Age Estimation Using MRI Data
Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimagi...
Gespeichert in:
Veröffentlicht in: | Neuroinformatics (Totowa, N.J.) N.J.), 2022-10, Vol.20 (4), p.981-990 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 990 |
---|---|
container_issue | 4 |
container_start_page | 981 |
container_title | Neuroinformatics (Totowa, N.J.) |
container_volume | 20 |
creator | Basodi, Sunitha Raja, Rajikha Ray, Bhaskar Gazula, Harshvardhan Sarwate, Anand D. Plis, Sergey Liu, Jingyu Verner, Eric Calhoun, Vince D. |
description | Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location. |
doi_str_mv | 10.1007/s12021-022-09570-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2647211260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727499044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-9da796eab2c6f97d661607b978d2c852ea881533d8e7f52239fb0caec24b02e93</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4Mobk6_gA9S8MWX6uXSJs3j3KYOFEHcc0jbdHR07UxamH56MzsVfPApB_nd_-5-hJxTuKYA4sZRBKQhIIYgYwHh9oAMaRzLECCRh7uayRCFpANy4twKALkAOCYDFrMEGI-HhE5NZurW6qr8MHlwa3VZB-OlCWauLde6LZs6WLiyXgZPL_Ngqlt9So4KXTlztn9HZHE3e508hI_P9_PJ-DHMmIA2lLkWkhudYsYLKXLOKQeRSpHkmCUxGp0kfj-WJ0YUMSKTRQqZNhlGKaCRbESu-tyNbd4641q1Ll1mqkrXpumcQh4JpBQ5ePTyD7pqOlv77RQKFJGUEEWewp7KbOOcNYXaWH-ifVcU1E6o6oUqL1R9CVVb33Sxj-7Stcl_Wr4NeoD1gPNf9dLY39n_xH4C2uJ-UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727499044</pqid></control><display><type>article</type><title>Decentralized Brain Age Estimation Using MRI Data</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Basodi, Sunitha ; Raja, Rajikha ; Ray, Bhaskar ; Gazula, Harshvardhan ; Sarwate, Anand D. ; Plis, Sergey ; Liu, Jingyu ; Verner, Eric ; Calhoun, Vince D.</creator><creatorcontrib>Basodi, Sunitha ; Raja, Rajikha ; Ray, Bhaskar ; Gazula, Harshvardhan ; Sarwate, Anand D. ; Plis, Sergey ; Liu, Jingyu ; Verner, Eric ; Calhoun, Vince D.</creatorcontrib><description>Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-022-09570-x</identifier><identifier>PMID: 35380365</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Age ; Age determination ; Age differences ; Aging ; Algorithms ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Brain architecture ; Collaboration ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Datasets ; Deep learning ; Functional anatomy ; Functional magnetic resonance imaging ; Machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Neuroimaging ; Neuroimaging - methods ; Neurology ; Neurosciences ; Original Article ; Prediction models ; Privacy ; Regression analysis</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2022-10, Vol.20 (4), p.981-990</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-9da796eab2c6f97d661607b978d2c852ea881533d8e7f52239fb0caec24b02e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-022-09570-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-022-09570-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35380365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basodi, Sunitha</creatorcontrib><creatorcontrib>Raja, Rajikha</creatorcontrib><creatorcontrib>Ray, Bhaskar</creatorcontrib><creatorcontrib>Gazula, Harshvardhan</creatorcontrib><creatorcontrib>Sarwate, Anand D.</creatorcontrib><creatorcontrib>Plis, Sergey</creatorcontrib><creatorcontrib>Liu, Jingyu</creatorcontrib><creatorcontrib>Verner, Eric</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><title>Decentralized Brain Age Estimation Using MRI Data</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location.</description><subject>Age</subject><subject>Age determination</subject><subject>Age differences</subject><subject>Aging</subject><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Brain architecture</subject><subject>Collaboration</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Functional anatomy</subject><subject>Functional magnetic resonance imaging</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Privacy</subject><subject>Regression analysis</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kFFLwzAQx4Mobk6_gA9S8MWX6uXSJs3j3KYOFEHcc0jbdHR07UxamH56MzsVfPApB_nd_-5-hJxTuKYA4sZRBKQhIIYgYwHh9oAMaRzLECCRh7uayRCFpANy4twKALkAOCYDFrMEGI-HhE5NZurW6qr8MHlwa3VZB-OlCWauLde6LZs6WLiyXgZPL_Ngqlt9So4KXTlztn9HZHE3e508hI_P9_PJ-DHMmIA2lLkWkhudYsYLKXLOKQeRSpHkmCUxGp0kfj-WJ0YUMSKTRQqZNhlGKaCRbESu-tyNbd4641q1Ll1mqkrXpumcQh4JpBQ5ePTyD7pqOlv77RQKFJGUEEWewp7KbOOcNYXaWH-ifVcU1E6o6oUqL1R9CVVb33Sxj-7Stcl_Wr4NeoD1gPNf9dLY39n_xH4C2uJ-UQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Basodi, Sunitha</creator><creator>Raja, Rajikha</creator><creator>Ray, Bhaskar</creator><creator>Gazula, Harshvardhan</creator><creator>Sarwate, Anand D.</creator><creator>Plis, Sergey</creator><creator>Liu, Jingyu</creator><creator>Verner, Eric</creator><creator>Calhoun, Vince D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20221001</creationdate><title>Decentralized Brain Age Estimation Using MRI Data</title><author>Basodi, Sunitha ; Raja, Rajikha ; Ray, Bhaskar ; Gazula, Harshvardhan ; Sarwate, Anand D. ; Plis, Sergey ; Liu, Jingyu ; Verner, Eric ; Calhoun, Vince D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-9da796eab2c6f97d661607b978d2c852ea881533d8e7f52239fb0caec24b02e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>Age determination</topic><topic>Age differences</topic><topic>Aging</topic><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Brain architecture</topic><topic>Collaboration</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Functional anatomy</topic><topic>Functional magnetic resonance imaging</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Privacy</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basodi, Sunitha</creatorcontrib><creatorcontrib>Raja, Rajikha</creatorcontrib><creatorcontrib>Ray, Bhaskar</creatorcontrib><creatorcontrib>Gazula, Harshvardhan</creatorcontrib><creatorcontrib>Sarwate, Anand D.</creatorcontrib><creatorcontrib>Plis, Sergey</creatorcontrib><creatorcontrib>Liu, Jingyu</creatorcontrib><creatorcontrib>Verner, Eric</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basodi, Sunitha</au><au>Raja, Rajikha</au><au>Ray, Bhaskar</au><au>Gazula, Harshvardhan</au><au>Sarwate, Anand D.</au><au>Plis, Sergey</au><au>Liu, Jingyu</au><au>Verner, Eric</au><au>Calhoun, Vince D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Brain Age Estimation Using MRI Data</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>20</volume><issue>4</issue><spage>981</spage><epage>990</epage><pages>981-990</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35380365</pmid><doi>10.1007/s12021-022-09570-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-2791 |
ispartof | Neuroinformatics (Totowa, N.J.), 2022-10, Vol.20 (4), p.981-990 |
issn | 1539-2791 1559-0089 |
language | eng |
recordid | cdi_proquest_miscellaneous_2647211260 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Age Age determination Age differences Aging Algorithms Bioinformatics Biomedical and Life Sciences Biomedicine Brain - diagnostic imaging Brain architecture Collaboration Computational Biology/Bioinformatics Computer Appl. in Life Sciences Datasets Deep learning Functional anatomy Functional magnetic resonance imaging Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Neuroimaging Neuroimaging - methods Neurology Neurosciences Original Article Prediction models Privacy Regression analysis |
title | Decentralized Brain Age Estimation Using MRI Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Brain%20Age%20Estimation%20Using%20MRI%20Data&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Basodi,%20Sunitha&rft.date=2022-10-01&rft.volume=20&rft.issue=4&rft.spage=981&rft.epage=990&rft.pages=981-990&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-022-09570-x&rft_dat=%3Cproquest_cross%3E2727499044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727499044&rft_id=info:pmid/35380365&rfr_iscdi=true |