Decentralized Brain Age Estimation Using MRI Data
Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimagi...
Gespeichert in:
Veröffentlicht in: | Neuroinformatics (Totowa, N.J.) N.J.), 2022-10, Vol.20 (4), p.981-990 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies have demonstrated that neuroimaging data can be used to estimate biological brain age, as it captures information about the neuroanatomical and functional changes the brain undergoes during development and the aging process. However, researchers often have limited access to neuroimaging data because of its challenging and expensive acquisition process, thereby limiting the effectiveness of the predictive model. Decentralized models provide a way to build more accurate and generalizable prediction models, bypassing the traditional data-sharing methodology. In this work, we propose a decentralized method for biological brain age estimation using support vector regression models and evaluate it on three different feature sets, including both volumetric and voxelwise structural MRI data as well as resting functional MRI data. The results demonstrate that our decentralized brain age regression models can achieve similar performance compared to the models trained with all the data in one location. |
---|---|
ISSN: | 1539-2791 1559-0089 |
DOI: | 10.1007/s12021-022-09570-x |