Alteration in the Population of Intraepithelial Lymphocytes and Virus Shedding in Specific-Pathogen-Free Chickens Following Inoculation with Lentogenic and Velogenic Newcastle Disease Virus Strains

Intraepithelial lymphocytes (IELs) provide the first line of immunological defense after the invasion of the intestine by a pathogen. To understand the changes of IEL response in chickens, we measured the population of different subsets of avian IELs at different time points after primary inoculatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Viral immunology 2022-05, Vol.35 (4), p.328-337
Hauptverfasser: Hamisu, Tasiu Mallam, Aliyu, Hayatuddeen Bako, Hair-Bejo, Mohd, Omar, Abdul Rahman, Ideris, Aini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intraepithelial lymphocytes (IELs) provide the first line of immunological defense after the invasion of the intestine by a pathogen. To understand the changes of IEL response in chickens, we measured the population of different subsets of avian IELs at different time points after primary inoculation of Newcastle disease virus (NDV) lentogenic strain (LaSota) and subsequent challenge with NDV velogenic strain- genotypes VII and VIII. Furthermore, NDV shed after each treatment was quantified. Specific-pathogen-free chickens were randomly divided into six groups of chickens, one to six, inoculated with phosphate buffered saline; NDV lentogenic strain (LaSota); genotype VII (GVII); LaSota and challenged with GVII (LSGVII); genotype VIII (GVIII); and group of LaSota and challenged with GVIII (LSGVIII). The chickens were euthanized at 12, 36, and 60 h postchallenge. Immunophenotyping of CD25 + IEL, CD3 + cells, CD4 + cells, and CD8 + cells was conducted using flow cytometer. Furthermore, virus shedding was measured using reverse transcriptase–quantitative polymerase chain reaction. Data were analyzed using a two-way analysis of variance (ANOVA). The results showed that the percentage population of IEL subsets was generally lower in the chickens inoculated with GVII or GVIII when compared with LaSota, LSGVII and LSGVIII inoculated groups. The NDV copy number was significantly higher in chickens challenged with NDV GVII or GVIII when compared with chickens inoculated with LaSota, LSGVII or LSGVIII. Taking together, NDV velogenic strain caused decrease in the population of subsets of chickens' IEL. However, inoculation of NDV LaSota may increase the population of avian IEL subsets and decrease shedding of virulent NDV.
ISSN:0882-8245
1557-8976
DOI:10.1089/vim.2021.0148