Orthogonality of diffractive deep neural network

Some rules of the diffractive deep neural network (D NN) are discovered. They reveal that the inner product of any two optical fields in D NN is invariant and the D NN acts as a unitary transformation for optical fields. If the output intensities of the two inputs are separated spatially, the input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2022-04, Vol.47 (7), p.1798-1801
Hauptverfasser: Zheng, Shuiqin, Xu, Shixiang, Fan, Dianyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some rules of the diffractive deep neural network (D NN) are discovered. They reveal that the inner product of any two optical fields in D NN is invariant and the D NN acts as a unitary transformation for optical fields. If the output intensities of the two inputs are separated spatially, the input fields must be orthogonal. These rules imply that the D NN is not only suitable for the classification of general objects but also more suitable for applications aimed at optical orthogonal modes. Our simulation shows the D NN performs well in applications like mode conversion, mode multiplexing/demultiplexing, and optical mode recognition.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.449899