Cross-Linking Induced Emission of Polymer Micelles for High-Contrast Visualization Level 3 Details of Latent Fingerprints
Rationally developing an intelligent tool for high-contrast fluorescence imaging of latent fingerprints (LFPs) is gaining much concern in many applications such as medical diagnostics and forensic investigations. Herein, the off-on fluorescent polymer micelles (PMs) have been rationally designed and...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-04, Vol.14 (14), p.16746-16754 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rationally developing an intelligent tool for high-contrast fluorescence imaging of latent fingerprints (LFPs) is gaining much concern in many applications such as medical diagnostics and forensic investigations. Herein, the off-on fluorescent polymer micelles (PMs) have been rationally designed and synthesized for high-contrast fluorescence imaging of LFPs through the cross-linking reaction of hydrazine (N
H
) and aldehyde group of polymer. Excitingly, the cross-linking (N
H
) induced emission of PMs has the property of aggregation-induced emission (AIE) and excited state intramolecular proton transfer (ESIPT), which could effectively address the notorious aggregation-caused quenching (ACQ) effects of conventional organic dyes. In addition, the cross-linking strategy can not only improve structural stability of PMs but also enhance its fluorescence brightness. The experiment results demonstrated that PMs showed high water dispersibility (100% aqueous solution), high selectivity, large Stokes shift (∼150 nm), good photostability, and excellent long-term stability. Because of the hydrophobic interaction between the PMs and fingerprint components, the PMs preferentially adhered onto the ridges of fingerprint, and then cross-linking (N
H
) induced emission properties endowed the PMs for high-contrast imaging of LFPs in different substrates, especially the levels 1-3 details of LFPs. We expect that this strategy will provide vital support for LFPs technology. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c02563 |