Detecting Subsolar-Mass Primordial Black Holes in Extreme Mass-Ratio Inspirals with LISA and Einstein Telescope

Primordial black holes possibly formed in the early Universe could provide a significant fraction of the dark matter and would be unique probes of inflation. A smoking gun for their discovery would be the detection of a subsolar mass compact object. We argue that extreme mass-ratio inspirals will be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2022-03, Vol.128 (11), p.111104-111104, Article 111104
Hauptverfasser: Barsanti, Susanna, De Luca, Valerio, Maselli, Andrea, Pani, Paolo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Primordial black holes possibly formed in the early Universe could provide a significant fraction of the dark matter and would be unique probes of inflation. A smoking gun for their discovery would be the detection of a subsolar mass compact object. We argue that extreme mass-ratio inspirals will be ideal to search for subsolar-mass black holes not only with LISA but also with third-generation ground-based detectors such as Cosmic Explorer and the Einstein Telescope. These sources can provide unparalleled measurements of the mass of the secondary object at a subpercent level for primordial black holes as light as O(0.01)  M_{⊙} up to luminosity distances around hundred megaparsec and few gigaparsec for LISA and Einstein Telescope, respectively, in a complementary frequency range. This would allow claiming, with very high statistical confidence, the detection of a subsolar-mass black hole, which would also provide a novel (and currently undetectable) family of sources for third-generation detectors.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.128.111104