Zinc diffusion tellurium doped gallium antimonide
Zinc diffusion into tellurium doped gallium antimonide, GaSb, has been carried out as a function of time, temperature, and antimony over-pressure. Total zinc profiles as well as carrier concentration profiles have been measured. Results favor a substitutional-interstitial vacancy (Frank-Turnbull)1 o...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 1996-07, Vol.25 (7), p.1108-1112 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zinc diffusion into tellurium doped gallium antimonide, GaSb, has been carried out as a function of time, temperature, and antimony over-pressure. Total zinc profiles as well as carrier concentration profiles have been measured. Results favor a substitutional-interstitial vacancy (Frank-Turnbull)1 or kick-out (Gösele-Morehead)2 mechanism, although there is insufficient evidence to conclusively distinguish between them. There is also an inverse dependence of the diffusivity on antimony over-pressure, this is discussed in terms of zinc diffusion superimposed on gallium vacancy diffusion. Tellurium doping seems to have little effect on the diffusion because of its low level in comparison to that of zinc. Furthermore, at high zinc concentrations, the profiles indicate an additional component associated with a non-electrically active zinc species which has a small, strongly temperature dependent diffusion coefficient. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/BF02659911 |