Preparing porous Cu/Pd electrode on nickel foam using hydrogen bubbles dynamic template for high-efficiency and high-stability removal of nitrate from water
Electrochemical reduction is a promising technology to remove nitrate from water. The metallic composition and geometry of electrodes usually dominate the nitrate removal property. Based on nickel foam (NF), we prepared Cu/Pd bimetallic electrode using hydrogen bubbles dynamic template according to...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2022-08, Vol.29 (38), p.57629-57643 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrochemical reduction is a promising technology to remove nitrate from water. The metallic composition and geometry of electrodes usually dominate the nitrate removal property. Based on nickel foam (NF), we prepared Cu/Pd bimetallic electrode using hydrogen bubbles dynamic template according to a two-step electrodeposition method (Pd after Cu). The micromorphology, crystal structure, and metallic composition were analyzed by using the field emission scanning electron microscope with energy dispersive spectroscopy (FESEM-EDS), powder X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) instruments, respectively. 4.4 mg of Cu and 1.4 mg of Pd were detected on the prepared Cu/Pd electrode. The micromorphology of prepared Cu/Pd electrode showed a grape-bunch look with porous structure of two stage sizes (100–500 nm and 200–300 μm). 98% of the initial NO
3
−
-N (100 mg/L) was removed under the potential of − 1.6 V vs. Ag/AgCl saturated KCl after 24 h of reaction when using 0.05 mol/L of Na
2
SO
4
or NaCl as electrolyte. But the concentration of produced NH
4
+
-N was higher than 80 mg/L when using Na
2
SO
4
as electrolyte, which was close to 0 mg/L when using NaCl as electrolyte. The cyclic voltammetry curves of 1000 cycles and the long-term continuous flow test of about 200 h suggested that the prepared Cu/Pd electrode showed high stability for nitrate removal from water. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-022-19942-0 |