Color Vision Testing, Standards, and Visual Performance of the U.S. Military

ABSTRACT Introduction Color vision deficiency (CVD) is a disqualifying condition for military special duty occupations. Color vision testing and standards vary slightly among the U.S. military branches. Paper-based pseudoisochromatic plates (PIPs) remain a screening tool. Computer-based color vision...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Military medicine 2023-01, Vol.188 (1-2), p.49-57
Hauptverfasser: Gao, Hong, Kirkendall, Cristina D, Kinney, Micah J, Preston, Adam M, Reddix, Michael D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Introduction Color vision deficiency (CVD) is a disqualifying condition for military special duty occupations. Color vision testing and standards vary slightly among the U.S. military branches. Paper-based pseudoisochromatic plates (PIPs) remain a screening tool. Computer-based color vision tests (CVTs), i.e., the Cone Contrast Test (CCT), the Colour Assessment and Diagnosis (CAD) test, and the Waggoner Computerized Color Vision Test (WCCVT), are now replacing the Farnsworth Lantern Test (FALANT) and its variants to serve as a primary or secondary test in the U.S. Armed Forces. To maintain consistency in recruitment, performance, and safety, the study objectives were to examine military color vision testing, passing criteria, and color discrimination performance. Methods Study participants were 191 (17% female) students, faculty, and staff of the U.S. Air Force Academy and the Naval Aerospace Medical Institute. All subjects performed six CVTs, and 141 participants completed two additional military relevant color discrimination tasks. Friedman non-parametric test and Wilcoxon signed-rank post hoc test with Bonferroni adjusted P values were used to compare CVTs and standards. Analysis of variance and Bonferroni adjusted post hoc test were used to describe effects on color discrimination performance. Results The Heidelberg Multicolor—Moreland and Rayleigh (HMC-MR) anomaloscope diagnosed 58 CVD (30.4%). There were no statistically significant differences in identifying red–green CVD by the HMC-MR, CCT, CAD, WCCVT, and PIP tests (P = .18), or classifying deutan, protan, and normal color vision (CVN) by the HMC-MR and the CVT (P = .25). Classification of tritan CVD was significantly different depending on which CVT was used (P 
ISSN:0026-4075
1930-613X
DOI:10.1093/milmed/usac080