PI3K/AKT/Nrf2 signalling pathway is involved in the ameliorative effects of xanthohumol on amyloid β-induced oxidative damage and bone loss
Xanthohumol (XAN), a natural isoflavone from Humulus lupulus L., possesses biological activities on relieving oxidative stress and osteoporosis (OP). This study aimed to evaluate the antioxidative and osteoprotective effect of XAN on Aβ-injured osteoblasts, and explore its underlying mechanism. Oste...
Gespeichert in:
Veröffentlicht in: | Journal of pharmacy and pharmacology 2022-07, Vol.74 (7), p.1017-1026 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Xanthohumol (XAN), a natural isoflavone from Humulus lupulus L., possesses biological activities on relieving oxidative stress and osteoporosis (OP). This study aimed to evaluate the antioxidative and osteoprotective effect of XAN on Aβ-injured osteoblasts, and explore its underlying mechanism.
Osteoblasts were pretreated with XAN followed by stimulation with Aβ1-42. Cell proliferation, ALP activity, bone mineralization and bone formation index were measured. Apoptosis and reactive oxygen species (ROS) were analysed with flow cytometer. PI3K inhibitor LY294002 or siRNA-Nrf2 was added and transfected in osteoblasts, to further confirm whether the pathway participated in the regulation of XAN-induced cytoprotection.
XAN markedly improved the proliferation, differentiation and mineralization of Aβ-injured osteoblasts. Additionally, XAN reduced cell apoptosis rate and ROS level, and increased the expression of p-AKT, Nrf2, NQO1, HO-1 and SOD-2. More importantly, LY294002 or siNrf2 abolished the beneficial effect of XAN on osteoblasts activity and decreased the PI3K expression and inhibited its downstream proteins, indicating XAN activated PI3K/AKT/Nrf2 pathway in Aβ-injured osteoblasts.
It was the first time to reveal the antioxidative and osteoprotective effect of XAN through regulating PI3K/AKT/Nrf2 pathway in Aβ-injured osteoblasts, which provides reference for the clinical application of XAN in the prevention and treatment of OP. |
---|---|
ISSN: | 0022-3573 2042-7158 |
DOI: | 10.1093/jpp/rgac007 |