The minimum feature set problem

One approach to improving the generalization power of a neural net is to try to minimize the number of nonzero weights used. We examine two issues relevant to this approach, for single-layer nets. First we bound the VC dimension of the set of linear-threshold functions that have nonzero weights for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 1994, Vol.7 (3), p.491-494
Hauptverfasser: Van Horn, Kevin S., Martinez, Tony R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One approach to improving the generalization power of a neural net is to try to minimize the number of nonzero weights used. We examine two issues relevant to this approach, for single-layer nets. First we bound the VC dimension of the set of linear-threshold functions that have nonzero weights for at most s of n inputs. Second, we show that the problem of minimizing the number of nonzero input weights used (without misclassifying training examples) is both NP-hard and difficult to approximate.
ISSN:0893-6080
1879-2782
DOI:10.1016/0893-6080(94)90082-5