Model-based recognition of anatomical objects from medical images

We present both a high-level symbolic model of the human brain, and a method of using this model to aid in the recognition of objects from medical images. The model is stored as a frame-based semantic network consisting of three coexisting graphs (a spatial adjacency graph, a part hierarchy and an i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 1994, Vol.12 (8), p.499-507
Hauptverfasser: Robinson, GP, Colchester, ACF, Griffin, LD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present both a high-level symbolic model of the human brain, and a method of using this model to aid in the recognition of objects from medical images. The model is stored as a frame-based semantic network consisting of three coexisting graphs (a spatial adjacency graph, a part hierarchy and an inheritance graph). We propose a method similar to assumption-based truth maintenance systems for the collating and reasoning processes required in the labelling of input images.
ISSN:0262-8856
1872-8138
DOI:10.1016/0262-8856(94)90003-5