Solute Carrier Family 27 Member 6 (SLC27A6) Possibly Promotes the Proliferation of Papillary Thyroid Cancer by Regulating c-MYC

To investigate the expression and mechanism of LSC27A6 in papillary thyroid cancer (PTC). We analyzed the differential expression of SLC27A6 in PTC tissues and normal tissues based on the TCGA database and validated it using immunohistochemistry. Wilcoxon rank sum, chi-square test, or Fisher exact e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical genetics 2022-12, Vol.60 (6), p.2313-2326
Hauptverfasser: Liu, Changjian, Wang, Jian, Li, Dongdong, Ni, Ruoxuan, Zhao, Mei, Huang, ChangZhi, Liu, Shaoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the expression and mechanism of LSC27A6 in papillary thyroid cancer (PTC). We analyzed the differential expression of SLC27A6 in PTC tissues and normal tissues based on the TCGA database and validated it using immunohistochemistry. Wilcoxon rank sum, chi-square test, or Fisher exact exam were used to analyze the relationship between the expression of SLC27A6 and clinicopathological information. Samples were divided into two groups according to whether BRAF was mutated or not, and Wilcoxon rank sum was used to determine whether the expression of SLC27A6 was related to BRAF mutation. The effects of SLC27A6 on the proliferation, migration, and apoptosis of PTC cells were detected by cell counting kit-8 (CCK8), colony formation assay, transwell assay, and flow cytometry. Spearman correlation analysis was used to evaluate the relationship between SLC27A6 and c-MYC. Protein expression was detected by Western blot. The expression of SLC27A6 was higher in PTC and positively correlated with N stage. SLC27A6 expression was higher in samples with BRAF mutations. Down-regulation of SLC27A6 inhibited cell proliferation, migration, and invasion and induced apoptosis. Spearman correlation analysis showed that SLC27A6 was positively correlated with c-MYC. Knockdown of SLC27A6 inhibited c-MYC expression. Our results suggest that SLC27A6 is overexpressed in PTC tissues and affects the progression of PTC by regulating c-MYC.
ISSN:0006-2928
1573-4927
DOI:10.1007/s10528-022-10218-3