Improved approximation algorithms for shop scheduling problems
In the job shop scheduling problem, there are $m$ machines and $n$ jobs. A job consists of a sequence of operations, each of which must be processed on a specified machine, and the aim is to complete all jobs as quickly as possible. This problem is strongly .$\mathcal{NP}$-hard even for very restric...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1994-06, Vol.23 (3), p.617-632 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 632 |
---|---|
container_issue | 3 |
container_start_page | 617 |
container_title | SIAM journal on computing |
container_volume | 23 |
creator | SHMOYS, D. B STEIN, C WEIN, J |
description | In the job shop scheduling problem, there are $m$ machines and $n$ jobs. A job consists of a sequence of operations, each of which must be processed on a specified machine, and the aim is to complete all jobs as quickly as possible. This problem is strongly .$\mathcal{NP}$-hard even for very restrictive special cases. The authors give the first randomized and deterministic polynomial-time algorithms that yield polylogarithmic approximations to the optimal length schedule. These algorithms also extend to the more general case where a job is given not by a linear ordering of the machines on which it must be processed but by an arbitrary partial order. Comparable bounds can also be obtained when there are $m'$ types of machines, a specified number of machines of each type, and each operation must be processed on one of the machines of a specified type, as well as for the problem of scheduling unrelated parallel machines subject to chain precedence constraints. |
doi_str_mv | 10.1137/S009753979222676X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26446692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577221501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1df1d13288792fb827a8e1fda5f62d0301372cc0c39f0ee7d84d43b6101b1cca3</originalsourceid><addsrcrecordid>eNplUE1LxDAQDaLguvoDvBURb9VM0ibNRZDFj4UFDyp4K2k-dru0TU1a0X9vyi4elDnMwHsz895D6BzwNQDlNy8YC55TwQUhhHH2foBmgEWecgA4RLMJTif8GJ2EsMUYsgzoDN0u2967T6MT2cfhq27lULsukc3a-XrYtCGxzidh4_okqI3RY1N36yRSq8a04RQdWdkEc7bvc_T2cP-6eEpXz4_Lxd0qVZTTIQVtQQMlRRH12aogXBYGrJa5ZURjiqMFohRWVFhsDNdFpjNaMcBQgVKSztHV7m58_DGaMJRtHZRpGtkZN4aSsCxjTJBIvPhD3LrRd1FbKUCwmECsOYIdSXkXgje27H007r9LwOUUZ_kvzrhzuT8sg5KN9bJTdfhdpNFnXgD9Ae1bdIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919653939</pqid></control><display><type>article</type><title>Improved approximation algorithms for shop scheduling problems</title><source>SIAM Journals Online</source><creator>SHMOYS, D. B ; STEIN, C ; WEIN, J</creator><creatorcontrib>SHMOYS, D. B ; STEIN, C ; WEIN, J</creatorcontrib><description>In the job shop scheduling problem, there are $m$ machines and $n$ jobs. A job consists of a sequence of operations, each of which must be processed on a specified machine, and the aim is to complete all jobs as quickly as possible. This problem is strongly .$\mathcal{NP}$-hard even for very restrictive special cases. The authors give the first randomized and deterministic polynomial-time algorithms that yield polylogarithmic approximations to the optimal length schedule. These algorithms also extend to the more general case where a job is given not by a linear ordering of the machines on which it must be processed but by an arbitrary partial order. Comparable bounds can also be obtained when there are $m'$ types of machines, a specified number of machines of each type, and each operation must be processed on one of the machines of a specified type, as well as for the problem of scheduling unrelated parallel machines subject to chain precedence constraints.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/S009753979222676X</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Approximation ; Computer science ; Computer science; control theory; systems ; Exact sciences and technology ; Job shops ; Operational research and scientific management ; Operational research. Management science ; Scheduling ; Scheduling, sequencing ; Theoretical computing</subject><ispartof>SIAM journal on computing, 1994-06, Vol.23 (3), p.617-632</ispartof><rights>1995 INIST-CNRS</rights><rights>[Copyright] © 1994 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1df1d13288792fb827a8e1fda5f62d0301372cc0c39f0ee7d84d43b6101b1cca3</citedby><cites>FETCH-LOGICAL-c373t-1df1d13288792fb827a8e1fda5f62d0301372cc0c39f0ee7d84d43b6101b1cca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3373581$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SHMOYS, D. B</creatorcontrib><creatorcontrib>STEIN, C</creatorcontrib><creatorcontrib>WEIN, J</creatorcontrib><title>Improved approximation algorithms for shop scheduling problems</title><title>SIAM journal on computing</title><description>In the job shop scheduling problem, there are $m$ machines and $n$ jobs. A job consists of a sequence of operations, each of which must be processed on a specified machine, and the aim is to complete all jobs as quickly as possible. This problem is strongly .$\mathcal{NP}$-hard even for very restrictive special cases. The authors give the first randomized and deterministic polynomial-time algorithms that yield polylogarithmic approximations to the optimal length schedule. These algorithms also extend to the more general case where a job is given not by a linear ordering of the machines on which it must be processed but by an arbitrary partial order. Comparable bounds can also be obtained when there are $m'$ types of machines, a specified number of machines of each type, and each operation must be processed on one of the machines of a specified type, as well as for the problem of scheduling unrelated parallel machines subject to chain precedence constraints.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Job shops</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Scheduling</subject><subject>Scheduling, sequencing</subject><subject>Theoretical computing</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUE1LxDAQDaLguvoDvBURb9VM0ibNRZDFj4UFDyp4K2k-dru0TU1a0X9vyi4elDnMwHsz895D6BzwNQDlNy8YC55TwQUhhHH2foBmgEWecgA4RLMJTif8GJ2EsMUYsgzoDN0u2967T6MT2cfhq27lULsukc3a-XrYtCGxzidh4_okqI3RY1N36yRSq8a04RQdWdkEc7bvc_T2cP-6eEpXz4_Lxd0qVZTTIQVtQQMlRRH12aogXBYGrJa5ZURjiqMFohRWVFhsDNdFpjNaMcBQgVKSztHV7m58_DGaMJRtHZRpGtkZN4aSsCxjTJBIvPhD3LrRd1FbKUCwmECsOYIdSXkXgje27H007r9LwOUUZ_kvzrhzuT8sg5KN9bJTdfhdpNFnXgD9Ae1bdIY</recordid><startdate>19940601</startdate><enddate>19940601</enddate><creator>SHMOYS, D. B</creator><creator>STEIN, C</creator><creator>WEIN, J</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940601</creationdate><title>Improved approximation algorithms for shop scheduling problems</title><author>SHMOYS, D. B ; STEIN, C ; WEIN, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1df1d13288792fb827a8e1fda5f62d0301372cc0c39f0ee7d84d43b6101b1cca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Job shops</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Scheduling</topic><topic>Scheduling, sequencing</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHMOYS, D. B</creatorcontrib><creatorcontrib>STEIN, C</creatorcontrib><creatorcontrib>WEIN, J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHMOYS, D. B</au><au>STEIN, C</au><au>WEIN, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved approximation algorithms for shop scheduling problems</atitle><jtitle>SIAM journal on computing</jtitle><date>1994-06-01</date><risdate>1994</risdate><volume>23</volume><issue>3</issue><spage>617</spage><epage>632</epage><pages>617-632</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>In the job shop scheduling problem, there are $m$ machines and $n$ jobs. A job consists of a sequence of operations, each of which must be processed on a specified machine, and the aim is to complete all jobs as quickly as possible. This problem is strongly .$\mathcal{NP}$-hard even for very restrictive special cases. The authors give the first randomized and deterministic polynomial-time algorithms that yield polylogarithmic approximations to the optimal length schedule. These algorithms also extend to the more general case where a job is given not by a linear ordering of the machines on which it must be processed but by an arbitrary partial order. Comparable bounds can also be obtained when there are $m'$ types of machines, a specified number of machines of each type, and each operation must be processed on one of the machines of a specified type, as well as for the problem of scheduling unrelated parallel machines subject to chain precedence constraints.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S009753979222676X</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 1994-06, Vol.23 (3), p.617-632 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_miscellaneous_26446692 |
source | SIAM Journals Online |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Approximation Computer science Computer science control theory systems Exact sciences and technology Job shops Operational research and scientific management Operational research. Management science Scheduling Scheduling, sequencing Theoretical computing |
title | Improved approximation algorithms for shop scheduling problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20approximation%20algorithms%20for%20shop%20scheduling%20problems&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=SHMOYS,%20D.%20B&rft.date=1994-06-01&rft.volume=23&rft.issue=3&rft.spage=617&rft.epage=632&rft.pages=617-632&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/S009753979222676X&rft_dat=%3Cproquest_cross%3E2577221501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919653939&rft_id=info:pmid/&rfr_iscdi=true |