Improved approximation algorithms for shop scheduling problems
In the job shop scheduling problem, there are $m$ machines and $n$ jobs. A job consists of a sequence of operations, each of which must be processed on a specified machine, and the aim is to complete all jobs as quickly as possible. This problem is strongly .$\mathcal{NP}$-hard even for very restric...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1994-06, Vol.23 (3), p.617-632 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the job shop scheduling problem, there are $m$ machines and $n$ jobs. A job consists of a sequence of operations, each of which must be processed on a specified machine, and the aim is to complete all jobs as quickly as possible. This problem is strongly .$\mathcal{NP}$-hard even for very restrictive special cases. The authors give the first randomized and deterministic polynomial-time algorithms that yield polylogarithmic approximations to the optimal length schedule. These algorithms also extend to the more general case where a job is given not by a linear ordering of the machines on which it must be processed but by an arbitrary partial order. Comparable bounds can also be obtained when there are $m'$ types of machines, a specified number of machines of each type, and each operation must be processed on one of the machines of a specified type, as well as for the problem of scheduling unrelated parallel machines subject to chain precedence constraints. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/S009753979222676X |