Ibuprofen-loaded centrifugally spun microfibers for quick relief of inflammation in rats

The conventional dosage forms (tablets, capsules) of ibuprofen have less potential in the suppression of pain and inflammation due to their slow dissolution rates and lower bioavailability. The aim of this study was to fabricate fibrous solid dispersion of ibuprofen for improved dissolution rate and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug development and industrial pharmacy 2021-11, Vol.47 (11), p.1786-1793
Hauptverfasser: Hussain, Amjad, Hussain, Fahad, Arshad, Muhammad Sohail, Abbas, Nasir, Nasir, Sidra, Mudassir, Jahanzeb, Mahmood, Faisal, Ali, Ejaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conventional dosage forms (tablets, capsules) of ibuprofen have less potential in the suppression of pain and inflammation due to their slow dissolution rates and lower bioavailability. The aim of this study was to fabricate fibrous solid dispersion of ibuprofen for improved dissolution rate and quick therapeutic action. Drug-loaded microfibers were fabricated using centrifugal melt spinning (CMS) technique from the physical mixture of sucrose, ibuprofen and a hydrophilic polymer, PVP. These fibers were characterized by SEM, PXRD, DSC, and FTIR spectroscopy. The selected formulation was also pressed into tablets by direct compression method followed by its in vitro and in vivo characterization. The production yield of fibers was 75 ± 2% with an average diameter of 15 ± 5 µm. The drug loading efficiency (DLE) was 85 ± 5%. The tablets dissolved rapidly (85% of ibuprofen dissolved from tablet within first 2 min which was ∼5 times quicker than drug alone. Dissolution efficiency has improved from 0.63 of ibuprofen to 0.95 of that in fibers with ∼7 times reduction in mean dissolution time. PXRD, and DSC have shown the amorphous state of ibuprofen in the formulation and FTIR spectra demonstrated no interaction of drug with excipients. In vivo anti-inflammatory studies using rabbits revealed a significant (p 
ISSN:0363-9045
1520-5762
DOI:10.1080/03639045.2022.2059500