Long-lead seasonal forecast - where do we stand?
The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 mo...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Meteorological Society 1994-01, Vol.75 (11), p.2097-2114 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2114 |
---|---|
container_issue | 11 |
container_start_page | 2097 |
container_title | Bulletin of the American Meteorological Society |
container_volume | 75 |
creator | Barnston, Anthony G van den Dool, Huug M Zebiak, Stephen E Barnett, Tim P Ji, Ming Rodenhuis, David R Cane, Mark A Leetmaa, Ants Graham, Nicholas E Ropelewski, Chester R Kousky, Vernon E O'Lenic, Edward A Livezey, Robert E |
description | The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 months, the SST forecasts have an overall correlation skill in the 0.60s for 1982-93, which easily outperforms persistence and is regarded as useful. Both types of forecasts are not much better than local higher-order autoregressive controls. However, continual progress is being made in understanding relations among global oceanic and atmospheric climate-scale anomaly fields. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_26442799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26442799</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_264427993</originalsourceid><addsrcrecordid>eNpjYeA0MDAw1gUS5hwMXMXFWSCusYUhJ4OBT35eum5OamKKQnFqYnF-XmKOQlp-UWpyYnGJgq5CeUZqUapCSr5CeapCcUliXoo9DwNrWmJOcSovlOZmUHNzDXH20C0oyi8sTS0uic_NLE5OzclJzEvNLy2ONzIzMTEyt7Q0JlohAP20NN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26442799</pqid></control><display><type>article</type><title>Long-lead seasonal forecast - where do we stand?</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Barnston, Anthony G ; van den Dool, Huug M ; Zebiak, Stephen E ; Barnett, Tim P ; Ji, Ming ; Rodenhuis, David R ; Cane, Mark A ; Leetmaa, Ants ; Graham, Nicholas E ; Ropelewski, Chester R ; Kousky, Vernon E ; O'Lenic, Edward A ; Livezey, Robert E</creator><creatorcontrib>Barnston, Anthony G ; van den Dool, Huug M ; Zebiak, Stephen E ; Barnett, Tim P ; Ji, Ming ; Rodenhuis, David R ; Cane, Mark A ; Leetmaa, Ants ; Graham, Nicholas E ; Ropelewski, Chester R ; Kousky, Vernon E ; O'Lenic, Edward A ; Livezey, Robert E</creatorcontrib><description>The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 months, the SST forecasts have an overall correlation skill in the 0.60s for 1982-93, which easily outperforms persistence and is regarded as useful. Both types of forecasts are not much better than local higher-order autoregressive controls. However, continual progress is being made in understanding relations among global oceanic and atmospheric climate-scale anomaly fields.</description><identifier>ISSN: 0003-0007</identifier><language>eng</language><ispartof>Bulletin of the American Meteorological Society, 1994-01, Vol.75 (11), p.2097-2114</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Barnston, Anthony G</creatorcontrib><creatorcontrib>van den Dool, Huug M</creatorcontrib><creatorcontrib>Zebiak, Stephen E</creatorcontrib><creatorcontrib>Barnett, Tim P</creatorcontrib><creatorcontrib>Ji, Ming</creatorcontrib><creatorcontrib>Rodenhuis, David R</creatorcontrib><creatorcontrib>Cane, Mark A</creatorcontrib><creatorcontrib>Leetmaa, Ants</creatorcontrib><creatorcontrib>Graham, Nicholas E</creatorcontrib><creatorcontrib>Ropelewski, Chester R</creatorcontrib><creatorcontrib>Kousky, Vernon E</creatorcontrib><creatorcontrib>O'Lenic, Edward A</creatorcontrib><creatorcontrib>Livezey, Robert E</creatorcontrib><title>Long-lead seasonal forecast - where do we stand?</title><title>Bulletin of the American Meteorological Society</title><description>The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 months, the SST forecasts have an overall correlation skill in the 0.60s for 1982-93, which easily outperforms persistence and is regarded as useful. Both types of forecasts are not much better than local higher-order autoregressive controls. However, continual progress is being made in understanding relations among global oceanic and atmospheric climate-scale anomaly fields.</description><issn>0003-0007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MDAw1gUS5hwMXMXFWSCusYUhJ4OBT35eum5OamKKQnFqYnF-XmKOQlp-UWpyYnGJgq5CeUZqUapCSr5CeapCcUliXoo9DwNrWmJOcSovlOZmUHNzDXH20C0oyi8sTS0uic_NLE5OzclJzEvNLy2ONzIzMTEyt7Q0JlohAP20NN4</recordid><startdate>19940101</startdate><enddate>19940101</enddate><creator>Barnston, Anthony G</creator><creator>van den Dool, Huug M</creator><creator>Zebiak, Stephen E</creator><creator>Barnett, Tim P</creator><creator>Ji, Ming</creator><creator>Rodenhuis, David R</creator><creator>Cane, Mark A</creator><creator>Leetmaa, Ants</creator><creator>Graham, Nicholas E</creator><creator>Ropelewski, Chester R</creator><creator>Kousky, Vernon E</creator><creator>O'Lenic, Edward A</creator><creator>Livezey, Robert E</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940101</creationdate><title>Long-lead seasonal forecast - where do we stand?</title><author>Barnston, Anthony G ; van den Dool, Huug M ; Zebiak, Stephen E ; Barnett, Tim P ; Ji, Ming ; Rodenhuis, David R ; Cane, Mark A ; Leetmaa, Ants ; Graham, Nicholas E ; Ropelewski, Chester R ; Kousky, Vernon E ; O'Lenic, Edward A ; Livezey, Robert E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_264427993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnston, Anthony G</creatorcontrib><creatorcontrib>van den Dool, Huug M</creatorcontrib><creatorcontrib>Zebiak, Stephen E</creatorcontrib><creatorcontrib>Barnett, Tim P</creatorcontrib><creatorcontrib>Ji, Ming</creatorcontrib><creatorcontrib>Rodenhuis, David R</creatorcontrib><creatorcontrib>Cane, Mark A</creatorcontrib><creatorcontrib>Leetmaa, Ants</creatorcontrib><creatorcontrib>Graham, Nicholas E</creatorcontrib><creatorcontrib>Ropelewski, Chester R</creatorcontrib><creatorcontrib>Kousky, Vernon E</creatorcontrib><creatorcontrib>O'Lenic, Edward A</creatorcontrib><creatorcontrib>Livezey, Robert E</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnston, Anthony G</au><au>van den Dool, Huug M</au><au>Zebiak, Stephen E</au><au>Barnett, Tim P</au><au>Ji, Ming</au><au>Rodenhuis, David R</au><au>Cane, Mark A</au><au>Leetmaa, Ants</au><au>Graham, Nicholas E</au><au>Ropelewski, Chester R</au><au>Kousky, Vernon E</au><au>O'Lenic, Edward A</au><au>Livezey, Robert E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-lead seasonal forecast - where do we stand?</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>1994-01-01</date><risdate>1994</risdate><volume>75</volume><issue>11</issue><spage>2097</spage><epage>2114</epage><pages>2097-2114</pages><issn>0003-0007</issn><abstract>The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 months, the SST forecasts have an overall correlation skill in the 0.60s for 1982-93, which easily outperforms persistence and is regarded as useful. Both types of forecasts are not much better than local higher-order autoregressive controls. However, continual progress is being made in understanding relations among global oceanic and atmospheric climate-scale anomaly fields.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0007 |
ispartof | Bulletin of the American Meteorological Society, 1994-01, Vol.75 (11), p.2097-2114 |
issn | 0003-0007 |
language | eng |
recordid | cdi_proquest_miscellaneous_26442799 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Long-lead seasonal forecast - where do we stand? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-lead%20seasonal%20forecast%20-%20where%20do%20we%20stand?&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Barnston,%20Anthony%20G&rft.date=1994-01-01&rft.volume=75&rft.issue=11&rft.spage=2097&rft.epage=2114&rft.pages=2097-2114&rft.issn=0003-0007&rft_id=info:doi/&rft_dat=%3Cproquest%3E26442799%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26442799&rft_id=info:pmid/&rfr_iscdi=true |