Long-lead seasonal forecast - where do we stand?

The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 1994-01, Vol.75 (11), p.2097-2114
Hauptverfasser: Barnston, Anthony G, van den Dool, Huug M, Zebiak, Stephen E, Barnett, Tim P, Ji, Ming, Rodenhuis, David R, Cane, Mark A, Leetmaa, Ants, Graham, Nicholas E, Ropelewski, Chester R, Kousky, Vernon E, O'Lenic, Edward A, Livezey, Robert E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2114
container_issue 11
container_start_page 2097
container_title Bulletin of the American Meteorological Society
container_volume 75
creator Barnston, Anthony G
van den Dool, Huug M
Zebiak, Stephen E
Barnett, Tim P
Ji, Ming
Rodenhuis, David R
Cane, Mark A
Leetmaa, Ants
Graham, Nicholas E
Ropelewski, Chester R
Kousky, Vernon E
O'Lenic, Edward A
Livezey, Robert E
description The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 months, the SST forecasts have an overall correlation skill in the 0.60s for 1982-93, which easily outperforms persistence and is regarded as useful. Both types of forecasts are not much better than local higher-order autoregressive controls. However, continual progress is being made in understanding relations among global oceanic and atmospheric climate-scale anomaly fields.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_26442799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26442799</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_264427993</originalsourceid><addsrcrecordid>eNpjYeA0MDAw1gUS5hwMXMXFWSCusYUhJ4OBT35eum5OamKKQnFqYnF-XmKOQlp-UWpyYnGJgq5CeUZqUapCSr5CeapCcUliXoo9DwNrWmJOcSovlOZmUHNzDXH20C0oyi8sTS0uic_NLE5OzclJzEvNLy2ONzIzMTEyt7Q0JlohAP20NN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26442799</pqid></control><display><type>article</type><title>Long-lead seasonal forecast - where do we stand?</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Barnston, Anthony G ; van den Dool, Huug M ; Zebiak, Stephen E ; Barnett, Tim P ; Ji, Ming ; Rodenhuis, David R ; Cane, Mark A ; Leetmaa, Ants ; Graham, Nicholas E ; Ropelewski, Chester R ; Kousky, Vernon E ; O'Lenic, Edward A ; Livezey, Robert E</creator><creatorcontrib>Barnston, Anthony G ; van den Dool, Huug M ; Zebiak, Stephen E ; Barnett, Tim P ; Ji, Ming ; Rodenhuis, David R ; Cane, Mark A ; Leetmaa, Ants ; Graham, Nicholas E ; Ropelewski, Chester R ; Kousky, Vernon E ; O'Lenic, Edward A ; Livezey, Robert E</creatorcontrib><description>The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 months, the SST forecasts have an overall correlation skill in the 0.60s for 1982-93, which easily outperforms persistence and is regarded as useful. Both types of forecasts are not much better than local higher-order autoregressive controls. However, continual progress is being made in understanding relations among global oceanic and atmospheric climate-scale anomaly fields.</description><identifier>ISSN: 0003-0007</identifier><language>eng</language><ispartof>Bulletin of the American Meteorological Society, 1994-01, Vol.75 (11), p.2097-2114</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Barnston, Anthony G</creatorcontrib><creatorcontrib>van den Dool, Huug M</creatorcontrib><creatorcontrib>Zebiak, Stephen E</creatorcontrib><creatorcontrib>Barnett, Tim P</creatorcontrib><creatorcontrib>Ji, Ming</creatorcontrib><creatorcontrib>Rodenhuis, David R</creatorcontrib><creatorcontrib>Cane, Mark A</creatorcontrib><creatorcontrib>Leetmaa, Ants</creatorcontrib><creatorcontrib>Graham, Nicholas E</creatorcontrib><creatorcontrib>Ropelewski, Chester R</creatorcontrib><creatorcontrib>Kousky, Vernon E</creatorcontrib><creatorcontrib>O'Lenic, Edward A</creatorcontrib><creatorcontrib>Livezey, Robert E</creatorcontrib><title>Long-lead seasonal forecast - where do we stand?</title><title>Bulletin of the American Meteorological Society</title><description>The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 months, the SST forecasts have an overall correlation skill in the 0.60s for 1982-93, which easily outperforms persistence and is regarded as useful. Both types of forecasts are not much better than local higher-order autoregressive controls. However, continual progress is being made in understanding relations among global oceanic and atmospheric climate-scale anomaly fields.</description><issn>0003-0007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MDAw1gUS5hwMXMXFWSCusYUhJ4OBT35eum5OamKKQnFqYnF-XmKOQlp-UWpyYnGJgq5CeUZqUapCSr5CeapCcUliXoo9DwNrWmJOcSovlOZmUHNzDXH20C0oyi8sTS0uic_NLE5OzclJzEvNLy2ONzIzMTEyt7Q0JlohAP20NN4</recordid><startdate>19940101</startdate><enddate>19940101</enddate><creator>Barnston, Anthony G</creator><creator>van den Dool, Huug M</creator><creator>Zebiak, Stephen E</creator><creator>Barnett, Tim P</creator><creator>Ji, Ming</creator><creator>Rodenhuis, David R</creator><creator>Cane, Mark A</creator><creator>Leetmaa, Ants</creator><creator>Graham, Nicholas E</creator><creator>Ropelewski, Chester R</creator><creator>Kousky, Vernon E</creator><creator>O'Lenic, Edward A</creator><creator>Livezey, Robert E</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940101</creationdate><title>Long-lead seasonal forecast - where do we stand?</title><author>Barnston, Anthony G ; van den Dool, Huug M ; Zebiak, Stephen E ; Barnett, Tim P ; Ji, Ming ; Rodenhuis, David R ; Cane, Mark A ; Leetmaa, Ants ; Graham, Nicholas E ; Ropelewski, Chester R ; Kousky, Vernon E ; O'Lenic, Edward A ; Livezey, Robert E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_264427993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnston, Anthony G</creatorcontrib><creatorcontrib>van den Dool, Huug M</creatorcontrib><creatorcontrib>Zebiak, Stephen E</creatorcontrib><creatorcontrib>Barnett, Tim P</creatorcontrib><creatorcontrib>Ji, Ming</creatorcontrib><creatorcontrib>Rodenhuis, David R</creatorcontrib><creatorcontrib>Cane, Mark A</creatorcontrib><creatorcontrib>Leetmaa, Ants</creatorcontrib><creatorcontrib>Graham, Nicholas E</creatorcontrib><creatorcontrib>Ropelewski, Chester R</creatorcontrib><creatorcontrib>Kousky, Vernon E</creatorcontrib><creatorcontrib>O'Lenic, Edward A</creatorcontrib><creatorcontrib>Livezey, Robert E</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnston, Anthony G</au><au>van den Dool, Huug M</au><au>Zebiak, Stephen E</au><au>Barnett, Tim P</au><au>Ji, Ming</au><au>Rodenhuis, David R</au><au>Cane, Mark A</au><au>Leetmaa, Ants</au><au>Graham, Nicholas E</au><au>Ropelewski, Chester R</au><au>Kousky, Vernon E</au><au>O'Lenic, Edward A</au><au>Livezey, Robert E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-lead seasonal forecast - where do we stand?</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>1994-01-01</date><risdate>1994</risdate><volume>75</volume><issue>11</issue><spage>2097</spage><epage>2114</epage><pages>2097-2114</pages><issn>0003-0007</issn><abstract>The performance of five ENSO prediction systems are examined: two are dynamical; one is a hybrid coupled model; and two are statistical. With increasing physical understanding, dynamically based forecasts have the potential to become more skillful than purely statistical ones. At a lead time of 6 months, the SST forecasts have an overall correlation skill in the 0.60s for 1982-93, which easily outperforms persistence and is regarded as useful. Both types of forecasts are not much better than local higher-order autoregressive controls. However, continual progress is being made in understanding relations among global oceanic and atmospheric climate-scale anomaly fields.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 1994-01, Vol.75 (11), p.2097-2114
issn 0003-0007
language eng
recordid cdi_proquest_miscellaneous_26442799
source Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Long-lead seasonal forecast - where do we stand?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-lead%20seasonal%20forecast%20-%20where%20do%20we%20stand?&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Barnston,%20Anthony%20G&rft.date=1994-01-01&rft.volume=75&rft.issue=11&rft.spage=2097&rft.epage=2114&rft.pages=2097-2114&rft.issn=0003-0007&rft_id=info:doi/&rft_dat=%3Cproquest%3E26442799%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26442799&rft_id=info:pmid/&rfr_iscdi=true