Supramolecular Interactions Lead to Remarkably High Thermal Conductivities in Interpenetrated Two-Dimensional Porous Crystals
The design of innovative porous crystals with high porosities and large surface areas has garnered a great deal of attention over the past few decades due to their remarkable potential for a variety of applications. However, heat dissipation is key to realizing their potential. We use systematic ato...
Gespeichert in:
Veröffentlicht in: | Nano letters 2022-04, Vol.22 (7), p.3071-3076 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The design of innovative porous crystals with high porosities and large surface areas has garnered a great deal of attention over the past few decades due to their remarkable potential for a variety of applications. However, heat dissipation is key to realizing their potential. We use systematic atomistic simulations to reveal that interpenetrated porous crystals formed from two-dimensional (2D) frameworks possess remarkable thermal conductivities at high porosities in comparison to their three-dimensional (3D) single framework and interpenetrated 3D framework counterparts. In contrast to conventional understanding, higher thermal conductivities are associated with lower atomic densities and higher porosities for porous crystals formed from interpenetrating 2D frameworks. We attribute this to lower phonon–phonon scattering and vibrational hardening from the supramolecular interactions that restrict atomic vibrational amplitudes, facilitating heat conduction. This marks a new regime of materials design combining ultralow mass densities and ultrahigh thermal conductivities in 2D interpenetrated porous crystals. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.2c00420 |