Donor functionalized perylene and different π-spacer based sensitizers for dye-sensitized solar cell applications — a theoretical approach

A series of perylene-based novel metal-free organic dye sensitizers are designed and optimized for dye-sensitized solar cell (DSSC) applications. The electronic and optical properties are analyzed through density functional theory (DFT) and time-dependent density functional theory (TD-DFT) approach....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2022-04, Vol.28 (4), p.102-102, Article 102
Hauptverfasser: Nicksonsebastin, D., Pounraj, P., Prasath, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of perylene-based novel metal-free organic dye sensitizers are designed and optimized for dye-sensitized solar cell (DSSC) applications. The electronic and optical properties are analyzed through density functional theory (DFT) and time-dependent density functional theory (TD-DFT) approach. For perylene-based donors, the effects of additional donor units and different π-spacer positions were investigated. Cyanovinyl and thiophene are used as π-spacers, dimethylamine (DM) and N-N-dimethylaniline (DMA) are used as additional donors, and cyanoacrylic acid is used as mono acceptor unit for the designed sensitizers. Natural bonding orbitals (NBOs), frontier molecular orbitals (FMO), UV-Vis, and nonlinear orbital analysis were predicted to find the net electron transfer, energy gap, absorption spectra, and electronic charge distribution for perylene-based dye sensitizers, respectively. The electron injection and electron regeneration properties were also analyzed for perylene-based sensitizers.
ISSN:1610-2940
0948-5023
DOI:10.1007/s00894-022-05087-x