Donor functionalized perylene and different π-spacer based sensitizers for dye-sensitized solar cell applications — a theoretical approach
A series of perylene-based novel metal-free organic dye sensitizers are designed and optimized for dye-sensitized solar cell (DSSC) applications. The electronic and optical properties are analyzed through density functional theory (DFT) and time-dependent density functional theory (TD-DFT) approach....
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2022-04, Vol.28 (4), p.102-102, Article 102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of perylene-based novel metal-free organic dye sensitizers are designed and optimized for dye-sensitized solar cell (DSSC) applications. The electronic and optical properties are analyzed through density functional theory (DFT) and time-dependent density functional theory (TD-DFT) approach. For perylene-based donors, the effects of additional donor units and different π-spacer positions were investigated. Cyanovinyl and thiophene are used as π-spacers, dimethylamine (DM) and N-N-dimethylaniline (DMA) are used as additional donors, and cyanoacrylic acid is used as mono acceptor unit for the designed sensitizers. Natural bonding orbitals (NBOs), frontier molecular orbitals (FMO), UV-Vis, and nonlinear orbital analysis were predicted to find the net electron transfer, energy gap, absorption spectra, and electronic charge distribution for perylene-based dye sensitizers, respectively. The electron injection and electron regeneration properties were also analyzed for perylene-based sensitizers. |
---|---|
ISSN: | 1610-2940 0948-5023 |
DOI: | 10.1007/s00894-022-05087-x |