Electronically-coupled redox centers in trimetallic cobalt complexes

Synthesis and isolation of molecular building blocks of metal-organic frameworks (MOFs) can provide unique opportunities for characterization that would otherwise be inaccessible due to the heterogeneous nature of MOFs. Herein, we report a series of trinuclear cobalt complexes incorporating dithiole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-04, Vol.51 (14), p.566-5672
Hauptverfasser: Intrator, Jeremy A, Orchanian, Nicholas M, Clough, Andrew J, Haiges, Ralf, Marinescu, Smaranda C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesis and isolation of molecular building blocks of metal-organic frameworks (MOFs) can provide unique opportunities for characterization that would otherwise be inaccessible due to the heterogeneous nature of MOFs. Herein, we report a series of trinuclear cobalt complexes incorporating dithiolene ligands, triphenylene-2,3,6,7,10,11-hexathiolate (THT) ( 1 3+ ), and benzene hexathiolate (BHT) ( 2 3+ ), with 1,1,1,-tris(diphenylphosphinomethyl)ethane (triphos) employed as the capping ligand. Single crystal X-ray analyses of 1 3+ and 2 3+ display three five-coordinate cobalt centers bound to the triphos and dithiolene ligands in a distorted square pyramidal geometry. Cyclic voltammetry studies of 1 3+ and 2 3+ reveal three redox features associated with the formation of mixed valence states due to the sequential reduction of the redox-active metal centers (Co III/II ). Using this electrochemical data, the comproportionality values were determined for 1 and 2 (log  K c = 1.4 and 1.5 for 1 , and 4.7 and 5.8 for 2 ), suggesting strong resonance-stabilized coupling of the metal centers, with stronger electronic coupling observed for complex 2 compared to that for complex 1 . Cyclic voltammetry studies were also performed in solvents of varying polarity, whereupon the difference in the standard potentials (Δ E 1/2 ) for 1 and 2 was found to shift as a function of the polarity of the solvent, indicating a negative correlation between the dielectric constant of the electrochemical medium and the stability of the mixed valence species. Spectroelectrochemical studies of in situ generated multi-valent (MV) states of complexes 1 and 2 display characteristic NIR intervalence charge transfer (IVCT) bands, and analysis of the IVCT transitions for complex 2 suggests a weakly coupled class II multi-valent species and relatively large electronic coupling factors (1700 cm −1 for the first multi-valent state of 2 2+ , and 1400 and 4000 cm −1 for the second multi-valent state of 2 + ). Density functional theory (DFT) calculations indicate a significant deviation in relative energies of the frontier orbitals of complexes 1 3+ , 2 3+ , and 3 + that contrasts those calculated for the analogous trinuclear cobalt dithiolene complexes employing pentamethylcyclopentadienyl (Cp*) as the capping ligand ( Co 3 Cp* 3 THT and Co 3 Cp* 3 BHT , respectively), and may be a result of the cationic nature of complexes 1 3+ , 2 3+ , and 3 + . Synthesis and isolation of molecular building block
ISSN:1477-9226
1477-9234
DOI:10.1039/d1dt03404a