Hybrid estimation algorithms

The optimal mean-square estimate of the state of a hybrid system is difficult to determine because the equations of state evolution are nonlinear and non-Gaussian. When there is a direct, albeit noisy, measurement of the modal state, it is possible to derive a useful approximation to the optimal est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 1994-04, Vol.81 (1), p.143-167
Hauptverfasser: SWORDER, D. D, VOJAK, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optimal mean-square estimate of the state of a hybrid system is difficult to determine because the equations of state evolution are nonlinear and non-Gaussian. When there is a direct, albeit noisy, measurement of the modal state, it is possible to derive a useful approximation to the optimal estimator. This simplified algorithm is tested on a target tracking problem, and is seen to be superior to the conventional extended Kalman filter. (Author)
ISSN:0022-3239
1573-2878
DOI:10.1007/BF02190317