Hybrid estimation algorithms
The optimal mean-square estimate of the state of a hybrid system is difficult to determine because the equations of state evolution are nonlinear and non-Gaussian. When there is a direct, albeit noisy, measurement of the modal state, it is possible to derive a useful approximation to the optimal est...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 1994-04, Vol.81 (1), p.143-167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The optimal mean-square estimate of the state of a hybrid system is difficult to determine because the equations of state evolution are nonlinear and non-Gaussian. When there is a direct, albeit noisy, measurement of the modal state, it is possible to derive a useful approximation to the optimal estimator. This simplified algorithm is tested on a target tracking problem, and is seen to be superior to the conventional extended Kalman filter. (Author) |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/BF02190317 |