Asymmetrically Engineered Nanoscale Transistors for On-Demand Sourcing of Terahertz Plasmons

Terahertz (THz) plasma oscillations represent a potential path to implement ultrafast electronic devices and circuits. Here, we present an approach to generate on-chip THz signals that relies on plasma-wave stabilization in nanoscale transistors with specific structural asymmetry. A hydrodynamic tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2022-04, Vol.22 (7), p.2674-2681
Hauptverfasser: Barut, Bilal, Cantos-Roman, Xavier, Crabb, Justin, Kwan, Chun-Pui, Dixit, Ripudaman, Arabchigavkani, Nargess, Yin, Shenchu, Nathawat, Jubin, He, Keke, Randle, Michael D, Vandrevala, Farah, Sugaya, Takeyoshi, Einarsson, Erik, Jornet, Josep M, Bird, Jonathan P, Aizin, Gregory R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Terahertz (THz) plasma oscillations represent a potential path to implement ultrafast electronic devices and circuits. Here, we present an approach to generate on-chip THz signals that relies on plasma-wave stabilization in nanoscale transistors with specific structural asymmetry. A hydrodynamic treatment shows how the transistor asymmetry supports plasma-wave amplification, giving rise to pronounced negative differential conductance (NDC). A demonstration of these behaviors is provided in InGaAs high-mobility transistors, which exhibit NDC in accordance with their designed asymmetry. The NDC onsets once the drift velocity in the channel reaches a threshold value, triggering the initial plasma instability. We also show how this feature can be made to persist beyond room temperature (to at least 75 °C), when the gating is configured to facilitate a transition between the hydrodynamic and ballistic regimes (of electron–electron transport). Our findings represent a significant step forward for efforts to develop active components for THz electronics.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c04515