Ratiometric Thermometers Based on Rhodamine B and Fluorescein Dye-Incorporated (Nano) Cyclodextrin Metal–Organic Frameworks
Macro- and nanosized core, as well as core–shell, γ-cyclodextrin metal–organic frameworks (γ-CD-MOFs) have been designed and used as platforms for the encapsulation of dye molecules to develop the first CD-MOF-based ratiometric optical thermometer materials. A novel dye combination was employed for...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-03, Vol.14 (12), p.14367-14379 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Macro- and nanosized core, as well as core–shell, γ-cyclodextrin metal–organic frameworks (γ-CD-MOFs) have been designed and used as platforms for the encapsulation of dye molecules to develop the first CD-MOF-based ratiometric optical thermometer materials. A novel dye combination was employed for this purpose, i.e., the duo rhodamine B (RhB) and fluorescein (FL). RhB is highly temperature-sensitive, whereas FL is less temperature-sensitive, and its luminescence emission peak is used as a reference. Promising results in terms of thermometric properties were obtained for a series of dye-encapsulated γ-CD-MOF materials based on this dye combination, with high relative sensitivities, even up to 5%K–1, for the dye-encapsulated 75%RhB-25%FL nanosized γ-CD-MOF, among the highest performance values reported so far for luminescent dual thermometers. In our study, we have additionally developed a simple yet effective preparation method for core–shell γ-CD-MOFs, allowing effective manipulation of the γ-CD-MOF shell growth. The proposed method allows incorporation of the FL and RhB dyes in the γ-CD-MOFs in a more controlled manner, enhancing the efficiency of the developed ratiometric (macro) γ-CD-MOF thermometers. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c01332 |