Flower-like molybdenum disulfide decorated ZIF-8-derived nitrogen-doped dodecahedral carbon for electro-catalytic degradation of phenol
In this work, flower-like molybdenum disulfide was constructed on the surface of ZIF-8-derived nitrogen-doped dodecahedral carbon (ZNC) for the electrocatalytic degradation of phenol. The flower-like nanostructure of MoS2@ZNC contributed to the exposure of more edge-active sites of MoS2. At the same...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2022-07, Vol.298, p.134315-134315, Article 134315 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, flower-like molybdenum disulfide was constructed on the surface of ZIF-8-derived nitrogen-doped dodecahedral carbon (ZNC) for the electrocatalytic degradation of phenol. The flower-like nanostructure of MoS2@ZNC contributed to the exposure of more edge-active sites of MoS2. At the same time, Mo4+ and Mo6+ co-existed in MoS2@ZNC, which promoted the generation of H2O2 and •OH, and improved the catalytic activity of composite materials. In addition, electrochemical performance analysis showed that MoS2 loaded on the surface of ZNC significantly improved the redox capacity of the material, and the composite ratio of MoS2 and ZNC affected the structure and properties of MoS2@ZNC composites. Moreover, the electrochemical performance of prepared MoS2@ZNC was evaluated by the generation of hydroxyl (•OH) and the degradation efficiency of phenol. The results showed that MoS2@ZNC-2 had an excellent phenol degradation efficiency (98.8%) and COD removal efficiency (86.8%) within 120 min. Furthermore, MoS2@ZNC cathode still maintained good performance after being experimented with 20 times, indicated the excellent stability of MoS2@ZNC.
Schematic diagram of preparation and degradation of phenol by MoS2@ZNC composites. [Display omitted]
•Flower-like MoS2 decorated ZIF-8-derived nitrogen-doped dodecahedral carbon.•MoS2@ZNC promotes the production of .•OH in electrochemical degradation.•MoS2@ZNC has an excellent electrocatalytic degradation efficiency of phenol.•MoS2@ZNC is a promising cathode material. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2022.134315 |