The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results

The controllability of a fully three-dimensional N -link swimmer is studied. After deriving the equations of motion in a low Reynolds number fluid by means of Resistive Force Theory, the controllability of the minimal 2-link swimmer is tackled using techniques from Geometric Control Theory. The shap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2022-04, Vol.178 (1), p.6-6, Article 6
Hauptverfasser: Marchello, Roberto, Morandotti, Marco, Shum, Henry, Zoppello, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 6
container_title Acta applicandae mathematicae
container_volume 178
creator Marchello, Roberto
Morandotti, Marco
Shum, Henry
Zoppello, Marta
description The controllability of a fully three-dimensional N -link swimmer is studied. After deriving the equations of motion in a low Reynolds number fluid by means of Resistive Force Theory, the controllability of the minimal 2-link swimmer is tackled using techniques from Geometric Control Theory. The shape of the 2-link swimmer is described by two angle parameters. It is shown that the associated vector fields that govern the dynamics generate, via taking their Lie brackets, all eight linearly independent directions in the combined configuration and shape space, leading to controllability; the swimmer can move from any starting configuration and shape to any target configuration and shape by operating on the two shape variables. The result is subsequently extended to the N -link swimmer. Finally, the minimal time optimal control problem and the minimization of the power expended are addressed and a qualitative description of the optimal strategies is provided.
doi_str_mv 10.1007/s10440-022-00480-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2640999160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637586542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-2292cdf17de02fa78092500ccc6e0f481a020ece3d75044b63041a7afe5322a53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun78AQ9S8OIlOkmatPUm6ycsLuh6Dtl2qtE2XZMW8d8bd_0AD84lDHnmnXlfQvYZHDOA7CQwSFOgwDkFSHOgYo2MmMw4LUCodTICpjKaAyu2yHYIzwAgCqU2yZaQvIilRuR29oTJLZ1Y95Lcv9m2RZ9Yl8yePGJyblt0wXYunCbjzvW-axozt43t3xPjqmS66G1rlu0dhqHpwy7ZqE0TcO_r3SEPlxez8TWdTK9uxmcTWqa57CnnBS-rmmUVAq9NlkPBJUBZlgqhTnNmgAOWKKpMRo9zJSBlJjM1SsG5kWKHHK10F757HTD0urWhxHiew24ImqsUokGmIKKHf9DnbvAuXhcpkclcyZRHiq-o0ncheKz1wkdv_l0z0J9p61XaOqatl2lrEYcOvqSHeYvVz8h3vBEQKyDEL_eI_nf3P7IfxJ2IuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637586542</pqid></control><display><type>article</type><title>The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results</title><source>Springer Nature - Complete Springer Journals</source><creator>Marchello, Roberto ; Morandotti, Marco ; Shum, Henry ; Zoppello, Marta</creator><creatorcontrib>Marchello, Roberto ; Morandotti, Marco ; Shum, Henry ; Zoppello, Marta</creatorcontrib><description>The controllability of a fully three-dimensional N -link swimmer is studied. After deriving the equations of motion in a low Reynolds number fluid by means of Resistive Force Theory, the controllability of the minimal 2-link swimmer is tackled using techniques from Geometric Control Theory. The shape of the 2-link swimmer is described by two angle parameters. It is shown that the associated vector fields that govern the dynamics generate, via taking their Lie brackets, all eight linearly independent directions in the combined configuration and shape space, leading to controllability; the swimmer can move from any starting configuration and shape to any target configuration and shape by operating on the two shape variables. The result is subsequently extended to the N -link swimmer. Finally, the minimal time optimal control problem and the minimization of the power expended are addressed and a qualitative description of the optimal strategies is provided.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-022-00480-3</identifier><identifier>PMID: 35299996</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Configurations ; Control theory ; Controllability ; Equations of motion ; Fields (mathematics) ; Fluid dynamics ; Fluid flow ; Mathematics ; Mathematics and Statistics ; Optimization ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Reynolds number ; Time optimal control</subject><ispartof>Acta applicandae mathematicae, 2022-04, Vol.178 (1), p.6-6, Article 6</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-2292cdf17de02fa78092500ccc6e0f481a020ece3d75044b63041a7afe5322a53</citedby><cites>FETCH-LOGICAL-c485t-2292cdf17de02fa78092500ccc6e0f481a020ece3d75044b63041a7afe5322a53</cites><orcidid>0000-0002-5385-1568 ; 0000-0003-3528-6152 ; 0000-0001-6659-4268 ; 0000-0001-5223-8297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-022-00480-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-022-00480-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35299996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchello, Roberto</creatorcontrib><creatorcontrib>Morandotti, Marco</creatorcontrib><creatorcontrib>Shum, Henry</creatorcontrib><creatorcontrib>Zoppello, Marta</creatorcontrib><title>The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><addtitle>Acta Appl Math</addtitle><description>The controllability of a fully three-dimensional N -link swimmer is studied. After deriving the equations of motion in a low Reynolds number fluid by means of Resistive Force Theory, the controllability of the minimal 2-link swimmer is tackled using techniques from Geometric Control Theory. The shape of the 2-link swimmer is described by two angle parameters. It is shown that the associated vector fields that govern the dynamics generate, via taking their Lie brackets, all eight linearly independent directions in the combined configuration and shape space, leading to controllability; the swimmer can move from any starting configuration and shape to any target configuration and shape by operating on the two shape variables. The result is subsequently extended to the N -link swimmer. Finally, the minimal time optimal control problem and the minimization of the power expended are addressed and a qualitative description of the optimal strategies is provided.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Configurations</subject><subject>Control theory</subject><subject>Controllability</subject><subject>Equations of motion</subject><subject>Fields (mathematics)</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Reynolds number</subject><subject>Time optimal control</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMoun78AQ9S8OIlOkmatPUm6ycsLuh6Dtl2qtE2XZMW8d8bd_0AD84lDHnmnXlfQvYZHDOA7CQwSFOgwDkFSHOgYo2MmMw4LUCodTICpjKaAyu2yHYIzwAgCqU2yZaQvIilRuR29oTJLZ1Y95Lcv9m2RZ9Yl8yePGJyblt0wXYunCbjzvW-axozt43t3xPjqmS66G1rlu0dhqHpwy7ZqE0TcO_r3SEPlxez8TWdTK9uxmcTWqa57CnnBS-rmmUVAq9NlkPBJUBZlgqhTnNmgAOWKKpMRo9zJSBlJjM1SsG5kWKHHK10F757HTD0urWhxHiew24ImqsUokGmIKKHf9DnbvAuXhcpkclcyZRHiq-o0ncheKz1wkdv_l0z0J9p61XaOqatl2lrEYcOvqSHeYvVz8h3vBEQKyDEL_eI_nf3P7IfxJ2IuA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Marchello, Roberto</creator><creator>Morandotti, Marco</creator><creator>Shum, Henry</creator><creator>Zoppello, Marta</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5385-1568</orcidid><orcidid>https://orcid.org/0000-0003-3528-6152</orcidid><orcidid>https://orcid.org/0000-0001-6659-4268</orcidid><orcidid>https://orcid.org/0000-0001-5223-8297</orcidid></search><sort><creationdate>20220401</creationdate><title>The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results</title><author>Marchello, Roberto ; Morandotti, Marco ; Shum, Henry ; Zoppello, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-2292cdf17de02fa78092500ccc6e0f481a020ece3d75044b63041a7afe5322a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Configurations</topic><topic>Control theory</topic><topic>Controllability</topic><topic>Equations of motion</topic><topic>Fields (mathematics)</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Reynolds number</topic><topic>Time optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchello, Roberto</creatorcontrib><creatorcontrib>Morandotti, Marco</creatorcontrib><creatorcontrib>Shum, Henry</creatorcontrib><creatorcontrib>Zoppello, Marta</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchello, Roberto</au><au>Morandotti, Marco</au><au>Shum, Henry</au><au>Zoppello, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><addtitle>Acta Appl Math</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>178</volume><issue>1</issue><spage>6</spage><epage>6</epage><pages>6-6</pages><artnum>6</artnum><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>The controllability of a fully three-dimensional N -link swimmer is studied. After deriving the equations of motion in a low Reynolds number fluid by means of Resistive Force Theory, the controllability of the minimal 2-link swimmer is tackled using techniques from Geometric Control Theory. The shape of the 2-link swimmer is described by two angle parameters. It is shown that the associated vector fields that govern the dynamics generate, via taking their Lie brackets, all eight linearly independent directions in the combined configuration and shape space, leading to controllability; the swimmer can move from any starting configuration and shape to any target configuration and shape by operating on the two shape variables. The result is subsequently extended to the N -link swimmer. Finally, the minimal time optimal control problem and the minimization of the power expended are addressed and a qualitative description of the optimal strategies is provided.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35299996</pmid><doi>10.1007/s10440-022-00480-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5385-1568</orcidid><orcidid>https://orcid.org/0000-0003-3528-6152</orcidid><orcidid>https://orcid.org/0000-0001-6659-4268</orcidid><orcidid>https://orcid.org/0000-0001-5223-8297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2022-04, Vol.178 (1), p.6-6, Article 6
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_miscellaneous_2640999160
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Configurations
Control theory
Controllability
Equations of motion
Fields (mathematics)
Fluid dynamics
Fluid flow
Mathematics
Mathematics and Statistics
Optimization
Partial Differential Equations
Probability Theory and Stochastic Processes
Reynolds number
Time optimal control
title The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20N-Link%20Swimmer%20in%20Three%20Dimensions:%20Controllability%20and%20Optimality%20Results&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Marchello,%20Roberto&rft.date=2022-04-01&rft.volume=178&rft.issue=1&rft.spage=6&rft.epage=6&rft.pages=6-6&rft.artnum=6&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-022-00480-3&rft_dat=%3Cproquest_cross%3E2637586542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637586542&rft_id=info:pmid/35299996&rfr_iscdi=true