The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results
The controllability of a fully three-dimensional N -link swimmer is studied. After deriving the equations of motion in a low Reynolds number fluid by means of Resistive Force Theory, the controllability of the minimal 2-link swimmer is tackled using techniques from Geometric Control Theory. The shap...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2022-04, Vol.178 (1), p.6-6, Article 6 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The controllability of a fully three-dimensional
N
-link swimmer is studied. After deriving the equations of motion in a low Reynolds number fluid by means of Resistive Force Theory, the controllability of the minimal 2-link swimmer is tackled using techniques from Geometric Control Theory. The shape of the 2-link swimmer is described by two angle parameters. It is shown that the associated vector fields that govern the dynamics generate, via taking their Lie brackets, all eight linearly independent directions in the combined configuration and shape space, leading to controllability; the swimmer can move from any starting configuration and shape to any target configuration and shape by operating on the two shape variables. The result is subsequently extended to the
N
-link swimmer. Finally, the minimal time optimal control problem and the minimization of the power expended are addressed and a qualitative description of the optimal strategies is provided. |
---|---|
ISSN: | 0167-8019 1572-9036 |
DOI: | 10.1007/s10440-022-00480-3 |