Targeted Manipulation of Cellular RNA m6A Methylation at the Single-Base Level

Development of tools for precise manipulation of cellular mRNA m6A methylation at the base level is highly required. Here, we report an RNA-guided RNA modification strategy using a fusion protein containing deactivated nuclease Cas13b and m6A methyltransferase METTL14, namely, dCas13b-M14, which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2022-04, Vol.17 (4), p.854-863
Hauptverfasser: Gao, Minsong, Su, Shichen, Cao, Jie, Xiang, Siying, Huang, Ye, Shu, Xiao, Ma, Jinbiao, Liu, Jianzhao
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of tools for precise manipulation of cellular mRNA m6A methylation at the base level is highly required. Here, we report an RNA-guided RNA modification strategy using a fusion protein containing deactivated nuclease Cas13b and m6A methyltransferase METTL14, namely, dCas13b-M14, which is designedly positioned in the cytoplasm. dCas13b-M14 naturally heterodimerizes with endogenous METTL3 to form a catalytic complex to methylate specific cytoplasmic mRNA under a guide RNA (gRNA). We developed assays to screen and validate the guiding specificity of varied gRNAs at single-base resolution. With an optimum combination of dCas13b-M14 and gRNAs inside cells, we have successfully tuned methylation levels of several selected mRNA m6A sites. The off-target effect was evaluated by whole transcriptome m6A sequencing, and a very minor perturbation on the methylome was revealed. Finally, we successfully utilized the editing tool to achieve de novo methylations on five selected mRNA sites. Together, this study paves the way for studying position-dependent roles of m6A methylation in a particular transcript.
ISSN:1554-8929
1554-8937
DOI:10.1021/acschembio.1c00895