Chondroitin Sulfate Enhances Proliferation and Migration via Inducing β-Catenin and Intracellular ROS as Well as Suppressing Metalloproteinases through Akt/NF-ϰB Pathway Inhibition in Human Chondrocytes

Background Chondroitin sulfate (CS) is found in humans’ cartilage, bone, cornea, skin, and arterial wall. It consists of the foundation substance in the extracellular matrix (ECM) of connective tissue. The oral supplement form of CS is clinically used in treating osteoarthritis (OA). Methods Cell mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutrition, health & aging health & aging, 2022-03, Vol.26 (3), p.307-313
Hauptverfasser: Hsu, H.-C., Ke, Y.-L., Lai, Y.-H., Hsieh, W.-C., Lin, C.-H., Huang, S.-S., Peng, J.-Y., Chen, Ching-Hsein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Chondroitin sulfate (CS) is found in humans’ cartilage, bone, cornea, skin, and arterial wall. It consists of the foundation substance in the extracellular matrix (ECM) of connective tissue. The oral supplement form of CS is clinically used in treating osteoarthritis (OA). Methods Cell migration was observed by the transwell assay. The EMT, Akt/IKK/IϰB pathways, TIMPs, collagen and MMPs in cell lysate were determined by Western blotting. The expression of MMP activity was determined by gelatin zymography. The production of reactive oxygen species (ROS) was determined by using a fluorescence spectrophotometer. Results In the current report, we demonstrated that CS can increase the cell proliferation and migration of chon-001 chondrocytes. Treatment with CS induced the epithelial—mesenchymal transition and increased the expression of type II collagen and TIMP-1/TIMP2 and inhibited the expressions and activities of metalloproteinase-9 (MMP-9) and metalloproteinase-2 (MMP-2). The phosphorylation of Akt, IϰB kinase (IKK), IϰB and p65 was decreased by CS. CS treatment resulted in β-catenin production and XAV939, a β-catenin inhibitor, and inhibited the cell proliferation by CS treatment. In addition, also significantly induced intracellular ROS generation. Treatment with antioxidant propyl gallate blocked cell migration induced by CS. Conclusion We demonstrated that CS induced cell proliferation and migration of chondrocytes by inducing β-catenin and enhancing ROS production. Moreover, our studies demonstrated that CS can increase the activity of chondrocytes and help patients with osteoarthritis to restore cartilage function.
ISSN:1279-7707
1760-4788
DOI:10.1007/s12603-022-1752-5