Triple plasmon-induced transparency and dynamically tunable electro-optics switch based on a multilayer patterned graphene metamaterial

A terahertz-band metamaterial composed of multilayer patterned graphene is proposed and triple plasmon-induced transparency is excited by coupling three bright modes with one dark mode. The Lorentz curve calculated by the coupled-mode theory agrees well with the finite-difference time-domain results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2022-03, Vol.39 (3), p.377-382
Hauptverfasser: Qin, Yipeng, Zhou, Fengqi, Liu, Zhimin, Zhang, Xiao, Zhuo, Shanshan, Luo, Xin, Ji, Cheng, Yang, Guangxin, Zhou, Zizhuo, Sun, Liwen, Liu, Ting
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A terahertz-band metamaterial composed of multilayer patterned graphene is proposed and triple plasmon-induced transparency is excited by coupling three bright modes with one dark mode. The Lorentz curve calculated by the coupled-mode theory agrees well with the finite-difference time-domain results. Dynamic tuning is investigated by changing the Fermi level. Multimode electro-optics switching can be designed and achieved, and the amplitude modulations of four resonance frequencies are 94.3%, 92.8%, 90.7%, and 93%, respectively, which can realize the design of synchronous and asynchronous electro-optics switches. It is hoped that these results can provide theoretical support and guidance for the future design and application of photonic and optoelectronic devices.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.443371