Site and bond percolation thresholds on regular lattices with compact extended-range neighborhoods in two and three dimensions

Extended-range percolation on various regular lattices, including all 11 Archimedean lattices in two dimensions and the simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices in three dimensions, is investigated. In two dimensions, correlations between coordination numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2022-02, Vol.105 (2-1), p.024105-024105, Article 024105
Hauptverfasser: Xun, Zhipeng, Hao, Dapeng, Ziff, Robert M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extended-range percolation on various regular lattices, including all 11 Archimedean lattices in two dimensions and the simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices in three dimensions, is investigated. In two dimensions, correlations between coordination number z and site thresholds p_{c} for Archimedean lattices up to 10th nearest neighbors (NN) are seen by plotting z versus 1/p_{c} and z versus -1/ln(1-p_{c}) using the data of d'Iribarne et al. [J. Phys. A 32, 2611 (1999)JPHAC50305-447010.1088/0305-4470/32/14/002] and others. The results show that all the plots overlap on a line with a slope consistent with the theoretically predicted asymptotic value of zp_{c}∼4η_{c}=4.51235, where η_{c} is the continuum threshold for disks. In three dimensions, precise site and bond thresholds for bcc and fcc lattices with 2nd and 3rd NN, and bond thresholds for the sc lattice with up to the 13th NN, are obtained by Monte Carlo simulations, using an efficient single-cluster growth method. For site percolation, the values of thresholds for different types of lattices with compact neighborhoods also collapse together, and linear fitting is consistent with the predicted value of zp_{c}∼8η_{c}=2.7351, where η_{c} is the continuum threshold for spheres. For bond percolation, Bethe-lattice behavior p_{c}=1/(z-1) is expected to hold for large z, and the finite-z correction is confirmed to satisfy zp_{c}-1∼a_{1}z^{-x}, with x=2/3 for three dimensions as predicted by Frei and Perkins [Electron. J. Probab. 21, 56 (2016)1083-648910.1214/16-EJP6] and by Xu et al. [Phys. Rev. E 103, 022127 (2021)2470-004510.1103/PhysRevE.103.022127]. Our analysis indicates that for compact neighborhoods, the asymptotic behavior of zp_{c} has universal properties, depending only on the dimension of the system and whether site or bond percolation but not on the type of lattice.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.105.024105