PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis
The discovery and interpretation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) protein in mitochondrial biogenesis, skeletal muscle and adipose tissue development has broad research prospects, so it is important to review the related studies of PGC-1α in detail and comprehe...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and genomics : MGG 2022-05, Vol.297 (3), p.621-633 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The discovery and interpretation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) protein in mitochondrial biogenesis, skeletal muscle and adipose tissue development has broad research prospects, so it is important to review the related studies of PGC-1α in detail and comprehensively. PGC-1α is a protein composed of 798 amino acids (aa) with a molecular weight of about 91 kDa. PGC-1α is involved in the operation of the respiratory chain by combining with deacetylase and phosphorylase to bind some nuclear receptors. In addition, PGC-1α affects skeletal muscle and adipose metabolism by regulating mitochondrial oxidative phosphorylation. Recently, new data suggest that regulating mitochondrial metabolism in adipose tissue may be an effective adjunct to the treatment of obesity. In addition, dietary resveratrol, which has an effective anti-obesity effect, has been shown to promote mitochondrial biosynthesis by activating AMPK/PGC-1α axis, as well as to regenerate muscle damaged by obesity. In this review, we combined previous studies to explore the latest studies, showing that PGC-1α can regulate mitochondrial biogenesis and is regulated by AMPK and SIRT1. Furthermore, PGC-1α is a favored protein, which not only regulates muscle fiber type, inhibits muscle atrophy, but also participates in browning of white adipose tissue (WAT) and regulates body heat production. So, we concluded that
PGC-1α
is a key gene in mitochondrial biogenesis and plays an important role in the regulation and regulation of mitochondrial biogenesis along with other genes involved in the process. Meanwhile, PGC-1α acts as a core metabolic regulator in adipose tissue and skeletal muscle. This review comprehensively summarizes a large number of research findings. First, the role of PGC-1α in mitochondrial biogenesis was clarified, and then the key role of PGC-1α in the development of skeletal muscle and adipose tissue was reevaluated. Furthermore, the role of PGC-1α in some human diseases was discussed. Finally, the role of
PGC-1α
as a major gene in poultry was pointed out, and the future research direction was proposed. |
---|---|
ISSN: | 1617-4615 1617-4623 |
DOI: | 10.1007/s00438-022-01878-2 |