Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices
In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning archi...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2022-02, Vol.105 (2-2), p.025304-025304, Article 025304 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 025304 |
---|---|
container_issue | 2-2 |
container_start_page | 025304 |
container_title | Physical review. E |
container_volume | 105 |
creator | Volkhonskiy, Denis Muravleva, Ekaterina Sudakov, Oleg Orlov, Denis Burnaev, Evgeny Koroteev, Dmitry Belozerov, Boris Krutko, Vladislav |
description | In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals. |
doi_str_mv | 10.1103/PhysRevE.105.025304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2640047175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640047175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-86bceb1cda6ca918c614a8449ae1971d97095251fd6b76fdd9f4da339aac23303</originalsourceid><addsrcrecordid>eNpVkE9LAzEQxYMottR-AkFy9LI12ST75yilVqGgiJ6XbDKh0d3NmuxW-u2NtBY8zTC8NzPvh9A1JQtKCbt72e7DK-xWC0rEgqSCEX6GpinPSUKIYOennosJmofwQQihGSlzml6iCRNpSSkrpqhfQwdeDnYHWOod-CC9lQ3uYPh2_jNg4zz2oFwXBj-qwboOO4OHrQdItG2hC3EUDb3zbgy4BW0lNt61OC74pwiNVRCu0IWRTYD5sc7Q-8PqbfmYbJ7XT8v7TaIYEUNSZLWCmiotMyVLWqiMcllwXkqgMYQuc1KKVFCjszrPjNal4VoyVkqpUsYIm6Hbw97eu68RwlC1NihoGtlBfLRKMx7h5DQXUcoOUuVdCB5M1XvbSr-vKKl-aVd_tONAVAfa0XVzPDDWMfXJ88eW_QAIQH-j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640047175</pqid></control><display><type>article</type><title>Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices</title><source>American Physical Society Journals</source><creator>Volkhonskiy, Denis ; Muravleva, Ekaterina ; Sudakov, Oleg ; Orlov, Denis ; Burnaev, Evgeny ; Koroteev, Dmitry ; Belozerov, Boris ; Krutko, Vladislav</creator><creatorcontrib>Volkhonskiy, Denis ; Muravleva, Ekaterina ; Sudakov, Oleg ; Orlov, Denis ; Burnaev, Evgeny ; Koroteev, Dmitry ; Belozerov, Boris ; Krutko, Vladislav</creatorcontrib><description>In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.105.025304</identifier><identifier>PMID: 35291138</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2022-02, Vol.105 (2-2), p.025304-025304, Article 025304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-86bceb1cda6ca918c614a8449ae1971d97095251fd6b76fdd9f4da339aac23303</citedby><cites>FETCH-LOGICAL-c305t-86bceb1cda6ca918c614a8449ae1971d97095251fd6b76fdd9f4da339aac23303</cites><orcidid>0000-0002-5353-5688 ; 0000-0002-9463-7883 ; 0000-0001-8424-0690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35291138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Volkhonskiy, Denis</creatorcontrib><creatorcontrib>Muravleva, Ekaterina</creatorcontrib><creatorcontrib>Sudakov, Oleg</creatorcontrib><creatorcontrib>Orlov, Denis</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Koroteev, Dmitry</creatorcontrib><creatorcontrib>Belozerov, Boris</creatorcontrib><creatorcontrib>Krutko, Vladislav</creatorcontrib><title>Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkE9LAzEQxYMottR-AkFy9LI12ST75yilVqGgiJ6XbDKh0d3NmuxW-u2NtBY8zTC8NzPvh9A1JQtKCbt72e7DK-xWC0rEgqSCEX6GpinPSUKIYOennosJmofwQQihGSlzml6iCRNpSSkrpqhfQwdeDnYHWOod-CC9lQ3uYPh2_jNg4zz2oFwXBj-qwboOO4OHrQdItG2hC3EUDb3zbgy4BW0lNt61OC74pwiNVRCu0IWRTYD5sc7Q-8PqbfmYbJ7XT8v7TaIYEUNSZLWCmiotMyVLWqiMcllwXkqgMYQuc1KKVFCjszrPjNal4VoyVkqpUsYIm6Hbw97eu68RwlC1NihoGtlBfLRKMx7h5DQXUcoOUuVdCB5M1XvbSr-vKKl-aVd_tONAVAfa0XVzPDDWMfXJ88eW_QAIQH-j</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Volkhonskiy, Denis</creator><creator>Muravleva, Ekaterina</creator><creator>Sudakov, Oleg</creator><creator>Orlov, Denis</creator><creator>Burnaev, Evgeny</creator><creator>Koroteev, Dmitry</creator><creator>Belozerov, Boris</creator><creator>Krutko, Vladislav</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5353-5688</orcidid><orcidid>https://orcid.org/0000-0002-9463-7883</orcidid><orcidid>https://orcid.org/0000-0001-8424-0690</orcidid></search><sort><creationdate>20220201</creationdate><title>Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices</title><author>Volkhonskiy, Denis ; Muravleva, Ekaterina ; Sudakov, Oleg ; Orlov, Denis ; Burnaev, Evgeny ; Koroteev, Dmitry ; Belozerov, Boris ; Krutko, Vladislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-86bceb1cda6ca918c614a8449ae1971d97095251fd6b76fdd9f4da339aac23303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkhonskiy, Denis</creatorcontrib><creatorcontrib>Muravleva, Ekaterina</creatorcontrib><creatorcontrib>Sudakov, Oleg</creatorcontrib><creatorcontrib>Orlov, Denis</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Koroteev, Dmitry</creatorcontrib><creatorcontrib>Belozerov, Boris</creatorcontrib><creatorcontrib>Krutko, Vladislav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkhonskiy, Denis</au><au>Muravleva, Ekaterina</au><au>Sudakov, Oleg</au><au>Orlov, Denis</au><au>Burnaev, Evgeny</au><au>Koroteev, Dmitry</au><au>Belozerov, Boris</au><au>Krutko, Vladislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>105</volume><issue>2-2</issue><spage>025304</spage><epage>025304</epage><pages>025304-025304</pages><artnum>025304</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals.</abstract><cop>United States</cop><pmid>35291138</pmid><doi>10.1103/PhysRevE.105.025304</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5353-5688</orcidid><orcidid>https://orcid.org/0000-0002-9463-7883</orcidid><orcidid>https://orcid.org/0000-0001-8424-0690</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2022-02, Vol.105 (2-2), p.025304-025304, Article 025304 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2640047175 |
source | American Physical Society Journals |
title | Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20adversarial%20networks%20for%20reconstruction%20of%20three-dimensional%20porous%20media%20from%20two-dimensional%20slices&rft.jtitle=Physical%20review.%20E&rft.au=Volkhonskiy,%20Denis&rft.date=2022-02-01&rft.volume=105&rft.issue=2-2&rft.spage=025304&rft.epage=025304&rft.pages=025304-025304&rft.artnum=025304&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.105.025304&rft_dat=%3Cproquest_cross%3E2640047175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640047175&rft_id=info:pmid/35291138&rfr_iscdi=true |