Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices

In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning archi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2022-02, Vol.105 (2-2), p.025304-025304, Article 025304
Hauptverfasser: Volkhonskiy, Denis, Muravleva, Ekaterina, Sudakov, Oleg, Orlov, Denis, Burnaev, Evgeny, Koroteev, Dmitry, Belozerov, Boris, Krutko, Vladislav
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 025304
container_issue 2-2
container_start_page 025304
container_title Physical review. E
container_volume 105
creator Volkhonskiy, Denis
Muravleva, Ekaterina
Sudakov, Oleg
Orlov, Denis
Burnaev, Evgeny
Koroteev, Dmitry
Belozerov, Boris
Krutko, Vladislav
description In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals.
doi_str_mv 10.1103/PhysRevE.105.025304
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2640047175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640047175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-86bceb1cda6ca918c614a8449ae1971d97095251fd6b76fdd9f4da339aac23303</originalsourceid><addsrcrecordid>eNpVkE9LAzEQxYMottR-AkFy9LI12ST75yilVqGgiJ6XbDKh0d3NmuxW-u2NtBY8zTC8NzPvh9A1JQtKCbt72e7DK-xWC0rEgqSCEX6GpinPSUKIYOennosJmofwQQihGSlzml6iCRNpSSkrpqhfQwdeDnYHWOod-CC9lQ3uYPh2_jNg4zz2oFwXBj-qwboOO4OHrQdItG2hC3EUDb3zbgy4BW0lNt61OC74pwiNVRCu0IWRTYD5sc7Q-8PqbfmYbJ7XT8v7TaIYEUNSZLWCmiotMyVLWqiMcllwXkqgMYQuc1KKVFCjszrPjNal4VoyVkqpUsYIm6Hbw97eu68RwlC1NihoGtlBfLRKMx7h5DQXUcoOUuVdCB5M1XvbSr-vKKl-aVd_tONAVAfa0XVzPDDWMfXJ88eW_QAIQH-j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640047175</pqid></control><display><type>article</type><title>Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices</title><source>American Physical Society Journals</source><creator>Volkhonskiy, Denis ; Muravleva, Ekaterina ; Sudakov, Oleg ; Orlov, Denis ; Burnaev, Evgeny ; Koroteev, Dmitry ; Belozerov, Boris ; Krutko, Vladislav</creator><creatorcontrib>Volkhonskiy, Denis ; Muravleva, Ekaterina ; Sudakov, Oleg ; Orlov, Denis ; Burnaev, Evgeny ; Koroteev, Dmitry ; Belozerov, Boris ; Krutko, Vladislav</creatorcontrib><description>In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.105.025304</identifier><identifier>PMID: 35291138</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2022-02, Vol.105 (2-2), p.025304-025304, Article 025304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-86bceb1cda6ca918c614a8449ae1971d97095251fd6b76fdd9f4da339aac23303</citedby><cites>FETCH-LOGICAL-c305t-86bceb1cda6ca918c614a8449ae1971d97095251fd6b76fdd9f4da339aac23303</cites><orcidid>0000-0002-5353-5688 ; 0000-0002-9463-7883 ; 0000-0001-8424-0690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35291138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Volkhonskiy, Denis</creatorcontrib><creatorcontrib>Muravleva, Ekaterina</creatorcontrib><creatorcontrib>Sudakov, Oleg</creatorcontrib><creatorcontrib>Orlov, Denis</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Koroteev, Dmitry</creatorcontrib><creatorcontrib>Belozerov, Boris</creatorcontrib><creatorcontrib>Krutko, Vladislav</creatorcontrib><title>Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkE9LAzEQxYMottR-AkFy9LI12ST75yilVqGgiJ6XbDKh0d3NmuxW-u2NtBY8zTC8NzPvh9A1JQtKCbt72e7DK-xWC0rEgqSCEX6GpinPSUKIYOennosJmofwQQihGSlzml6iCRNpSSkrpqhfQwdeDnYHWOod-CC9lQ3uYPh2_jNg4zz2oFwXBj-qwboOO4OHrQdItG2hC3EUDb3zbgy4BW0lNt61OC74pwiNVRCu0IWRTYD5sc7Q-8PqbfmYbJ7XT8v7TaIYEUNSZLWCmiotMyVLWqiMcllwXkqgMYQuc1KKVFCjszrPjNal4VoyVkqpUsYIm6Hbw97eu68RwlC1NihoGtlBfLRKMx7h5DQXUcoOUuVdCB5M1XvbSr-vKKl-aVd_tONAVAfa0XVzPDDWMfXJ88eW_QAIQH-j</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Volkhonskiy, Denis</creator><creator>Muravleva, Ekaterina</creator><creator>Sudakov, Oleg</creator><creator>Orlov, Denis</creator><creator>Burnaev, Evgeny</creator><creator>Koroteev, Dmitry</creator><creator>Belozerov, Boris</creator><creator>Krutko, Vladislav</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5353-5688</orcidid><orcidid>https://orcid.org/0000-0002-9463-7883</orcidid><orcidid>https://orcid.org/0000-0001-8424-0690</orcidid></search><sort><creationdate>20220201</creationdate><title>Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices</title><author>Volkhonskiy, Denis ; Muravleva, Ekaterina ; Sudakov, Oleg ; Orlov, Denis ; Burnaev, Evgeny ; Koroteev, Dmitry ; Belozerov, Boris ; Krutko, Vladislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-86bceb1cda6ca918c614a8449ae1971d97095251fd6b76fdd9f4da339aac23303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkhonskiy, Denis</creatorcontrib><creatorcontrib>Muravleva, Ekaterina</creatorcontrib><creatorcontrib>Sudakov, Oleg</creatorcontrib><creatorcontrib>Orlov, Denis</creatorcontrib><creatorcontrib>Burnaev, Evgeny</creatorcontrib><creatorcontrib>Koroteev, Dmitry</creatorcontrib><creatorcontrib>Belozerov, Boris</creatorcontrib><creatorcontrib>Krutko, Vladislav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkhonskiy, Denis</au><au>Muravleva, Ekaterina</au><au>Sudakov, Oleg</au><au>Orlov, Denis</au><au>Burnaev, Evgeny</au><au>Koroteev, Dmitry</au><au>Belozerov, Boris</au><au>Krutko, Vladislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>105</volume><issue>2-2</issue><spage>025304</spage><epage>025304</epage><pages>025304-025304</pages><artnum>025304</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals.</abstract><cop>United States</cop><pmid>35291138</pmid><doi>10.1103/PhysRevE.105.025304</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5353-5688</orcidid><orcidid>https://orcid.org/0000-0002-9463-7883</orcidid><orcidid>https://orcid.org/0000-0001-8424-0690</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2022-02, Vol.105 (2-2), p.025304-025304, Article 025304
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2640047175
source American Physical Society Journals
title Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20adversarial%20networks%20for%20reconstruction%20of%20three-dimensional%20porous%20media%20from%20two-dimensional%20slices&rft.jtitle=Physical%20review.%20E&rft.au=Volkhonskiy,%20Denis&rft.date=2022-02-01&rft.volume=105&rft.issue=2-2&rft.spage=025304&rft.epage=025304&rft.pages=025304-025304&rft.artnum=025304&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.105.025304&rft_dat=%3Cproquest_cross%3E2640047175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640047175&rft_id=info:pmid/35291138&rfr_iscdi=true