Generative adversarial networks for reconstruction of three-dimensional porous media from two-dimensional slices
In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning archi...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2022-02, Vol.105 (2-2), p.025304-025304, Article 025304 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many branches of earth sciences, the problem of rock study on the microlevel arises. However, a significant number of representative samples is not always feasible. Thus the problem of the generation of samples with similar properties becomes actual. In this paper we propose a deep learning architecture for three-dimensional porous medium reconstruction from two-dimensional slices. We fit a distribution on all possible three-dimensional structures of a specific type based on the given data set of samples. Then, given partial information (central slices), we recover the three-dimensional structure around such slices as the most probable one according to that constructed distribution. Technically, we implement this in the form of a deep neural network with encoder, generator, and discriminator modules. Numerical experiments show that this method provides a good reconstruction in terms of Minkowski functionals. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.105.025304 |