Modification methods and applications of egg protein gel properties: A review
Egg protein (EP) has a variety of functional properties, such as gelling, foaming, and emulsifying. The gel characteristics provide a foundation for applications in the food industry and research on EP. The proteins denature and aggregate to form a dense three‐dimensional gel network structure, with...
Gespeichert in:
Veröffentlicht in: | Comprehensive reviews in food science and food safety 2022-05, Vol.21 (3), p.2233-2252 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Egg protein (EP) has a variety of functional properties, such as gelling, foaming, and emulsifying. The gel characteristics provide a foundation for applications in the food industry and research on EP. The proteins denature and aggregate to form a dense three‐dimensional gel network structure, with a process influenced by protein concentration, pH, ion type, and strength. In addition, the gelation properties of EP can be altered to varying degrees by applying different treatment conditions to EP. Currently, modification methods for proteins include physical modification (heat‐induced denaturation, freeze–thaw modification, high‐pressure modification, and ultrasonic modification), chemical modification (glycosylation modification, phosphorylation modification, acylation modification, ethanol modification, polyphenol modification), and biological modification (enzyme modification). Pidan, salted eggs, egg tofu, and other egg products have unique sensory properties, due to the gel properties of EP. In accessions, EP has also been used as a new ingredient in food packaging and biopharmaceuticals due to its gel properties. This review will further promote EP gel research and provide guidance for its full application in many fields. |
---|---|
ISSN: | 1541-4337 1541-4337 |
DOI: | 10.1111/1541-4337.12907 |