Porous MoS2 nanosheets for the fast decomposition of energetic compounds
The energy release performance of energetic compounds like 3-nitro-1,2,4-trizole-5-one (NTO) and 5,5′-bistetrazole-1,1′-diolate (TKX-50) are indispensable in propellent formulations. However, thermal decomposition behavior is impeded by unfavorable catalysts. Presently, ultrathin porous MoS2 nanoshe...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2022-03, Vol.51 (13), p.5278-5284 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The energy release performance of energetic compounds like 3-nitro-1,2,4-trizole-5-one (NTO) and 5,5′-bistetrazole-1,1′-diolate (TKX-50) are indispensable in propellent formulations. However, thermal decomposition behavior is impeded by unfavorable catalysts. Presently, ultrathin porous MoS2 nanosheets (pMoS2) are considered as high-performance catalysts for NTO and TKX-50 decomposition. The pMoS2 in 5 wt% content could decrease the decomposition temperature of NTO and TKX-50 by 13.5 °C and 37.1 °C, respectively. Furthermore, the exothermic heat-release for pMoS2@NTO and pMoS2@TKX-50 were increased almost by a factor of two. The porous structure combined with large specific area of pMoS2 could mostly trigger the catalytic effect towards energetic compound decomposition. Additionally, the as-obtained MoS2 endowed advances in safety performance of NTO and TKX-50, with remarkably reduced impact and friction sensitivity. The as-proposed strategy may stimulate a different perspective towards the fast decomposition of energetic materials in propellants. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/d2dt00035k |