ATP-Triggered Intracellular In Situ Aggregation of a Gold-Nanoparticle-Equipped Triple-Helix Molecular Switch for Fluorescence Imaging and Photothermal Tumor Therapy

Isotropic gold nanoparticles (AuNPs) can generate a plasma–plasma interaction when aggregating and can also produce ideal photothermal effects. Some studies have designed ATP-responsive nanodrug delivery systems by taking advantage of the differences between internal and external ATP in tumor cells,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2022-03, Vol.38 (12), p.3755-3764
Hauptverfasser: Jiang, Yao, Zhao, Wenjing, Zhou, Huimin, Zhang, Qiuqi, Zhang, Shusheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isotropic gold nanoparticles (AuNPs) can generate a plasma–plasma interaction when aggregating and can also produce ideal photothermal effects. Some studies have designed ATP-responsive nanodrug delivery systems by taking advantage of the differences between internal and external ATP in tumor cells, but few studies have focused on the photothermal effects of ATP-induced AuNP aggregation in tumors. Here, a triple-helix probe (THP) molecular switch and MUC1 aptamer-functionalized AuNPs were constructed for fluorescence imaging analysis and photothermal therapy (PTT). The MUC1 aptamer guides THP-AuNP targeting in tumor cells, followed by the high concentration of ATP inducing structural changes in triple-helix probes and causing the intracellular aggregation of AuNPs, which cannot escape from the tumor site, enabling tumor imaging while performing PTT. Therefore, the designed THP-AuNPs have promising applications in fluorescence imaging and PTT.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.1c03331