Aspect Ratio Dependence of Heat Transfer in a Cylindrical Rayleigh-Bénard Cell

While the heat transfer and the flow dynamics in a cylindrical Rayleigh-Bénard (RB) cell are rather independent of the aspect ratio Γ (diameter/height) for large Γ, a small-Γ cell considerably stabilizes the flow and thus affects the heat transfer. Here, we first theoretically and numerically show t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2022-02, Vol.128 (8), p.084501-084501, Article 084501
Hauptverfasser: Ahlers, Guenter, Bodenschatz, Eberhard, Hartmann, Robert, He, Xiaozhou, Lohse, Detlef, Reiter, Philipp, Stevens, Richard J A M, Verzicco, Roberto, Wedi, Marcel, Weiss, Stephan, Zhang, Xuan, Zwirner, Lukas, Shishkina, Olga
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While the heat transfer and the flow dynamics in a cylindrical Rayleigh-Bénard (RB) cell are rather independent of the aspect ratio Γ (diameter/height) for large Γ, a small-Γ cell considerably stabilizes the flow and thus affects the heat transfer. Here, we first theoretically and numerically show that the critical Rayleigh number for the onset of convection at given Γ follows Ra_{c,Γ}∼Ra_{c,∞}(1+CΓ^{-2})^{2}, with C≲1.49 for Oberbeck-Boussinesq (OB) conditions. We then show that, in a broad aspect ratio range (1/32)≤Γ≤32, the rescaling Ra→Ra_{ℓ}≡Ra[Γ^{2}/(C+Γ^{2})]^{3/2} collapses various OB numerical and almost-OB experimental heat transport data Nu(Ra,Γ). Our findings predict the Γ dependence of the onset of the ultimate regime Ra_{u,Γ}∼[Γ^{2}/(C+Γ^{2})]^{-3/2} in the OB case. This prediction is consistent with almost-OB experimental results (which only exist for Γ=1, 1/2, and 1/3) for the transition in OB RB convection and explains why, in small-Γ cells, much larger Ra (namely, by a factor Γ^{-3}) must be achieved to observe the ultimate regime.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.128.084501