Effects of thifluzamide on soil fungal microbial ecology

Thifluzamide, a succinate dehydrogenase inhibitor fungicide, has been used extensively for many diseases control and has the risk of accumulation in soil ecology. In order to study the ecotoxicity of thifluzamide to soil fungal communities, typical corn field soils in north (Tai’an) and south (Guoya...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2022-06, Vol.431, p.128626-128626, Article 128626
Hauptverfasser: Yao, Xiangfeng, Liu, Yu, Liu, Xiang, Qiao, Zhihua, Sun, Shiang, Li, Xiangdong, Wang, Jun, Zhang, Fengwen, Jiang, Xingyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thifluzamide, a succinate dehydrogenase inhibitor fungicide, has been used extensively for many diseases control and has the risk of accumulation in soil ecology. In order to study the ecotoxicity of thifluzamide to soil fungal communities, typical corn field soils in north (Tai’an) and south (Guoyang) China were treated with thifluzamide (0, 0.1, 1.0 and 10.0 mg/kg) and incubated for 60 days. Thifluzamide exposure promoted soil basal respiration, and significantly reduced the number of soil culturable fungi and the abundance of soil fungi (RT-qPCR) in middle and late treatment period (15, 30, 60 days). Illumina Mi-Seq sequencing revealed that thifluzamide could reduce fungal alpha diversity (Sobs, Shannon, Simpson indexes) and change fungal community structure. FUN Guild analysis showed that the relative abundance of Undefined Saprotroph increased after the thifluzamide treatment, whereas that of Plant Pathogen decreased, and we concluded that exposure to thifluzamide could change the function of soil fungi. This study evaluated the soil ecological risk caused by thifluzamide’s release into soil, providing a basis for its rational application. [Display omitted] •Thifluzamide (TZ) exposure enhances soil basal respiration.•TZ inhibited soil cultivable fungi and the abundance of soil fungi.•TZ impacts soil fungal diversity, altering the relative abundance of dominant taxa.•TZ increases the proportion of saprotrophs while decreasing that of plant pathogens.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2022.128626