Pushing the Limits in Real-Time Measurements of Quantum Dynamics

Time-resolved studies of quantum systems are the key to understanding quantum dynamics at its core. The real-time measurement of individual quantum numbers as they switch between certain discrete values, well known as a "random telegraph signal," is expected to yield maximal physical insig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2022-02, Vol.128 (8), p.087701-087701, Article 087701
Hauptverfasser: Kleinherbers, E, Stegmann, P, Kurzmann, A, Geller, M, Lorke, A, König, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 087701
container_issue 8
container_start_page 087701
container_title Physical review letters
container_volume 128
creator Kleinherbers, E
Stegmann, P
Kurzmann, A
Geller, M
Lorke, A
König, J
description Time-resolved studies of quantum systems are the key to understanding quantum dynamics at its core. The real-time measurement of individual quantum numbers as they switch between certain discrete values, well known as a "random telegraph signal," is expected to yield maximal physical insight. However, the signal suffers from both systematic errors, such as a limited time resolution and noise from the measurement apparatus, as well as statistical errors due to a limited amount of data. Here we demonstrate that an evaluation scheme based on factorial cumulants can reduce the influence of such errors by orders of magnitude. The error resilience is supported by a general theory for the detection errors as well as experimental data of single-electron tunneling through a self-assembled quantum dot. Thus, factorial cumulants push the limits in the analysis of random telegraph data, which represent a wide class of experiments in physics, chemistry, engineering, and life sciences.
doi_str_mv 10.1103/PhysRevLett.128.087701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2638711960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638711960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-5fa4c6604c682e7e5ebb0f4e17055547bcfa337eed3703263e49d47500b7ab353</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEYmPwF6YcuXQ4TdO0N9D4lIoY0zhHaeeyoKYdTYq0f0_QBuJiH_w-tvwQMmUwYwz41WKzc0v8KtD7GYuzGWRSAjsiYwYyjyRjyTEZA3AW5QByRM6c-wAAFqfZKRlxEUuRCj4m14vBbUz7Tv0GaWGs8Y6ali5RN9HKWKTPqN3Qo8U2TLqavg669YOlt7tWW1O5c3JS68bhxaFPyNv93Wr-GBUvD0_zmyKqOGM-ErVOqjSFULIYJQosS6gTZBKEEIksq1pzLhHXXAKPU45Jvk6kACilLrngE3K537vtu88BnVfWuAqbRrfYDU4FJAtv5ymEaLqPVn3nXI-12vbG6n6nGKgfe-qfPRXsqb29AE4PN4bS4voP-9XFvwE99W1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638711960</pqid></control><display><type>article</type><title>Pushing the Limits in Real-Time Measurements of Quantum Dynamics</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kleinherbers, E ; Stegmann, P ; Kurzmann, A ; Geller, M ; Lorke, A ; König, J</creator><creatorcontrib>Kleinherbers, E ; Stegmann, P ; Kurzmann, A ; Geller, M ; Lorke, A ; König, J</creatorcontrib><description>Time-resolved studies of quantum systems are the key to understanding quantum dynamics at its core. The real-time measurement of individual quantum numbers as they switch between certain discrete values, well known as a "random telegraph signal," is expected to yield maximal physical insight. However, the signal suffers from both systematic errors, such as a limited time resolution and noise from the measurement apparatus, as well as statistical errors due to a limited amount of data. Here we demonstrate that an evaluation scheme based on factorial cumulants can reduce the influence of such errors by orders of magnitude. The error resilience is supported by a general theory for the detection errors as well as experimental data of single-electron tunneling through a self-assembled quantum dot. Thus, factorial cumulants push the limits in the analysis of random telegraph data, which represent a wide class of experiments in physics, chemistry, engineering, and life sciences.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.128.087701</identifier><identifier>PMID: 35275653</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2022-02, Vol.128 (8), p.087701-087701, Article 087701</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-5fa4c6604c682e7e5ebb0f4e17055547bcfa337eed3703263e49d47500b7ab353</citedby><cites>FETCH-LOGICAL-c311t-5fa4c6604c682e7e5ebb0f4e17055547bcfa337eed3703263e49d47500b7ab353</cites><orcidid>0000-0003-4859-2095 ; 0000-0003-3796-1908 ; 0000-0002-0405-7720 ; 0000-0003-2249-5510 ; 0000-0001-5947-0400 ; 0000-0003-3836-4611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35275653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kleinherbers, E</creatorcontrib><creatorcontrib>Stegmann, P</creatorcontrib><creatorcontrib>Kurzmann, A</creatorcontrib><creatorcontrib>Geller, M</creatorcontrib><creatorcontrib>Lorke, A</creatorcontrib><creatorcontrib>König, J</creatorcontrib><title>Pushing the Limits in Real-Time Measurements of Quantum Dynamics</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Time-resolved studies of quantum systems are the key to understanding quantum dynamics at its core. The real-time measurement of individual quantum numbers as they switch between certain discrete values, well known as a "random telegraph signal," is expected to yield maximal physical insight. However, the signal suffers from both systematic errors, such as a limited time resolution and noise from the measurement apparatus, as well as statistical errors due to a limited amount of data. Here we demonstrate that an evaluation scheme based on factorial cumulants can reduce the influence of such errors by orders of magnitude. The error resilience is supported by a general theory for the detection errors as well as experimental data of single-electron tunneling through a self-assembled quantum dot. Thus, factorial cumulants push the limits in the analysis of random telegraph data, which represent a wide class of experiments in physics, chemistry, engineering, and life sciences.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEYmPwF6YcuXQ4TdO0N9D4lIoY0zhHaeeyoKYdTYq0f0_QBuJiH_w-tvwQMmUwYwz41WKzc0v8KtD7GYuzGWRSAjsiYwYyjyRjyTEZA3AW5QByRM6c-wAAFqfZKRlxEUuRCj4m14vBbUz7Tv0GaWGs8Y6ali5RN9HKWKTPqN3Qo8U2TLqavg669YOlt7tWW1O5c3JS68bhxaFPyNv93Wr-GBUvD0_zmyKqOGM-ErVOqjSFULIYJQosS6gTZBKEEIksq1pzLhHXXAKPU45Jvk6kACilLrngE3K537vtu88BnVfWuAqbRrfYDU4FJAtv5ymEaLqPVn3nXI-12vbG6n6nGKgfe-qfPRXsqb29AE4PN4bS4voP-9XFvwE99W1O</recordid><startdate>20220225</startdate><enddate>20220225</enddate><creator>Kleinherbers, E</creator><creator>Stegmann, P</creator><creator>Kurzmann, A</creator><creator>Geller, M</creator><creator>Lorke, A</creator><creator>König, J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4859-2095</orcidid><orcidid>https://orcid.org/0000-0003-3796-1908</orcidid><orcidid>https://orcid.org/0000-0002-0405-7720</orcidid><orcidid>https://orcid.org/0000-0003-2249-5510</orcidid><orcidid>https://orcid.org/0000-0001-5947-0400</orcidid><orcidid>https://orcid.org/0000-0003-3836-4611</orcidid></search><sort><creationdate>20220225</creationdate><title>Pushing the Limits in Real-Time Measurements of Quantum Dynamics</title><author>Kleinherbers, E ; Stegmann, P ; Kurzmann, A ; Geller, M ; Lorke, A ; König, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-5fa4c6604c682e7e5ebb0f4e17055547bcfa337eed3703263e49d47500b7ab353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kleinherbers, E</creatorcontrib><creatorcontrib>Stegmann, P</creatorcontrib><creatorcontrib>Kurzmann, A</creatorcontrib><creatorcontrib>Geller, M</creatorcontrib><creatorcontrib>Lorke, A</creatorcontrib><creatorcontrib>König, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kleinherbers, E</au><au>Stegmann, P</au><au>Kurzmann, A</au><au>Geller, M</au><au>Lorke, A</au><au>König, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pushing the Limits in Real-Time Measurements of Quantum Dynamics</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2022-02-25</date><risdate>2022</risdate><volume>128</volume><issue>8</issue><spage>087701</spage><epage>087701</epage><pages>087701-087701</pages><artnum>087701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Time-resolved studies of quantum systems are the key to understanding quantum dynamics at its core. The real-time measurement of individual quantum numbers as they switch between certain discrete values, well known as a "random telegraph signal," is expected to yield maximal physical insight. However, the signal suffers from both systematic errors, such as a limited time resolution and noise from the measurement apparatus, as well as statistical errors due to a limited amount of data. Here we demonstrate that an evaluation scheme based on factorial cumulants can reduce the influence of such errors by orders of magnitude. The error resilience is supported by a general theory for the detection errors as well as experimental data of single-electron tunneling through a self-assembled quantum dot. Thus, factorial cumulants push the limits in the analysis of random telegraph data, which represent a wide class of experiments in physics, chemistry, engineering, and life sciences.</abstract><cop>United States</cop><pmid>35275653</pmid><doi>10.1103/PhysRevLett.128.087701</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4859-2095</orcidid><orcidid>https://orcid.org/0000-0003-3796-1908</orcidid><orcidid>https://orcid.org/0000-0002-0405-7720</orcidid><orcidid>https://orcid.org/0000-0003-2249-5510</orcidid><orcidid>https://orcid.org/0000-0001-5947-0400</orcidid><orcidid>https://orcid.org/0000-0003-3836-4611</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2022-02, Vol.128 (8), p.087701-087701, Article 087701
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2638711960
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Pushing the Limits in Real-Time Measurements of Quantum Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pushing%20the%20Limits%20in%20Real-Time%20Measurements%20of%20Quantum%20Dynamics&rft.jtitle=Physical%20review%20letters&rft.au=Kleinherbers,%20E&rft.date=2022-02-25&rft.volume=128&rft.issue=8&rft.spage=087701&rft.epage=087701&rft.pages=087701-087701&rft.artnum=087701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.128.087701&rft_dat=%3Cproquest_cross%3E2638711960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638711960&rft_id=info:pmid/35275653&rfr_iscdi=true