Pushing the Limits in Real-Time Measurements of Quantum Dynamics

Time-resolved studies of quantum systems are the key to understanding quantum dynamics at its core. The real-time measurement of individual quantum numbers as they switch between certain discrete values, well known as a "random telegraph signal," is expected to yield maximal physical insig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2022-02, Vol.128 (8), p.087701-087701, Article 087701
Hauptverfasser: Kleinherbers, E, Stegmann, P, Kurzmann, A, Geller, M, Lorke, A, König, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-resolved studies of quantum systems are the key to understanding quantum dynamics at its core. The real-time measurement of individual quantum numbers as they switch between certain discrete values, well known as a "random telegraph signal," is expected to yield maximal physical insight. However, the signal suffers from both systematic errors, such as a limited time resolution and noise from the measurement apparatus, as well as statistical errors due to a limited amount of data. Here we demonstrate that an evaluation scheme based on factorial cumulants can reduce the influence of such errors by orders of magnitude. The error resilience is supported by a general theory for the detection errors as well as experimental data of single-electron tunneling through a self-assembled quantum dot. Thus, factorial cumulants push the limits in the analysis of random telegraph data, which represent a wide class of experiments in physics, chemistry, engineering, and life sciences.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.128.087701